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ABSTRACT

The ability to utilize large numbers of unmanned systems as search agents allows the im-
plementation of different search strategies that are not currently explored utilizing today’s
search decision support and analysis tools. This thesis develops a framework in MATLAB
that allows the investigation of search strategies that utilize large numbers, or a swarm, of
search agents. By implementing a modular design, multiple aspects of the search, such
as tactics, searcher characteristics, and target characteristics, can easily be varied and an-
alyzed. Utilizing JMP to perform statistical analysis, future design requirements can be
refined in order to advise decision makers on possible alternatives and trade spaces for
optimizing swarm search performance. Numerical studies demonstrate the ability to lever-
age the developed simulation and analysis framework to investigate three canonical swarm
search models as benchmarks for future exploration of more sophisticated swarm search
scenarios.
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Executive Summary

Information provides a distinct advantage in the battlespace. Knowing the strength and
disposition of an opponent’s forces allows the efficient allocation of one’s own resources.
Therefore, it is vital to possess not only the capability to gather information, but also the
ability to utilize those information-gathering resources efficiently. The advent of unmanned
systems and their introduction into the battlespace provide the capability to quickly gather
large amounts of data [1]. For many such systems, their relatively small size, inexpensive
cost, and the ability to save lives by keeping pilots out of dangerous situations make them
ideal reconnaissance assets, especially in dangerous situations [2]. Unfortunately, limi-
tations in command and control of unmanned systems as well as legacies from utilizing
manned systems have prevented the use of large numbers of unmanned systems as effi-
ciently as possible. Recent advances in technology and autonomous control allow for the
coordination of large numbers of unmanned systems, often termed swarms [3]–[5]. For
their future employment, it is necessary to develop new methods of gathering information
and performing searches in light of these new capabilities [6]. The development of an
analytic and simulation framework for designing, simulating, and assessing swarm search
capabilities motivates this thesis, with the goal of providing a foundation for follow-on
research.

First we define a simple scenario that guides the development of our model. We then de-
velop a simulation framework in MATLAB in order to investigate the scenario. We utilize
a modular approach, breaking the simulation down to its core components, and developing
them in such a manner that any module can be isolated, replaced, and/or adapted to facili-
tate the investigation of different search patterns and strategies. Following the development
of our simulation framework, we implement three search patterns, namely Agents Abreast,
Agents in Column, and Random Walk, to address the search problems in the scenario, as
well as demonstrate the flexibility of the framework.

In designing our experiment, we investigate the advantages and disadvantages of several
well-known experimental designs. We implement a Nearly Orthogonal Latin Hypercube
design for the generation of our design points in order to leverage its space-filling property
with a relatively small number of design points [7]–[10]. We utilize this design to inspect

xv



how different searcher characteristics affect search performance, including the number of
searchers, the speed of the searchers, and the spacing between them. To analyze our data,
we use the regression capabilities of JMP. In particular, stepwise and standard least squares
linear regression on the Monte Carlo simulation show that nearly all of the inspected factors
contribute to our model, but the number of searchers is the most significant for the Agents
Abreast and Random Walk search patterns, and searcher spacing and velocity are the most
important for the Agents in Column pattern. Though the presented scenario only analyzes
a reduced number of agent characteristics and search patterns, the analysis demonstrates
that the framework is capable of modeling different search patterns and providing results
in a form ready for analysis.

The presented work also illustrates several potential operational applications of this frame-
work, as well as aspects of the framework that can be improved in future research in the
hopes of encouraging further analysis in this developing field of study.
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CHAPTER 1:

Introduction

1.1 Background and Motivation

1.1.1 Changing Undersea Search Environment
Military capabilities change and advance as new technologies are developed and integrated
into military platforms. While these advances greatly improve our own capabilities, they
also provide new areas for the enemy to exploit. Over the past several decades, the capa-
bilities of undersea platforms have greatly improved with smaller acoustic signals making
them harder to find and track by conventional acoustic methods [1], [2]. Though the U.S.
and allied military forces may compensate for this by employing other sensors, such as
magnetic anomaly detectors (MAD) in the search for underwater vehicles. However, limi-
tations in the capabilities of these sensors need to be overcome before they are completely
effective. By exploring new tactics to search for and track underwater vehicles, this thesis
seeks to find more efficient and effective means to address these emergent threats.

Advances in technology are not limited solely to the undersea environment. Recent sig-
nificant advances in Unmanned Systems (UXSs) create an immense new field to explore,
providing unique advantages in many warfare areas. One advantage of UXSs is the ability
to employ them in large numbers, such as in swarms [3]. While each individual platform
provides capabilities less than those of current warships or aircraft, when large numbers
are considered in aggregate, they can quickly surpass the abilities of a single asset and
potentially at significantly less cost [4]. Furthermore, the implementation of UXSs nearly
eliminates the risk to human lives and to the conventional platforms they replace, providing
an immeasurable benefit in reducing human losses. By using autonomous swarms with the
proper tactics, it might be possible to significantly improve search and track capabilities in
anti-submarine warfare missions.

The Peoples Republic of China is rapidly becoming a world power and is placing an in-
creased emphasis on maritime control of the Western Pacific. In order to accomplish these
goals, China has increased her submarine inventory, and her neighboring countries have
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responded in a similar manner [1]. Meanwhile, the U.S. submarine inventory continues
to decrease. While an increase in the number of UXS provides some compensation for
the decreasing inventory, current capabilities and tactics do not allow UXS to replace sub-
marines. Creating a method to investigate the operational utility of UXS is vital to ensure
the development of these systems into an effective tool.

The tactical potential of swarms has yet to be fully investigated. Also the communica-
tions and computational requirements for operating a swarm are difficult to estimate [5].
Unfortunately, most current search strategies and analytic tools are designed around the
employment of a single search agent, or perhaps a few, and are not suited for a large num-
ber of searchers [6].

1.1.2 Previous Work
Previous areas of research have often focused on search methods derived from nature [7].
One example of such bio-inspired models is based on the method ants use for foraging.
By using a limited number of indicators, often referred to as “digital pheromones,” large
numbers of unintelligent agents are able to coordinate and act in an intelligent manner [5],
[8], [9]. Engelbrecht explains how even without a central controller, workers know when to
reassign themselves to different tasks [10]. This type of search coordination using indirect
communication, or stigmergy, could prove very effective where there is limited communi-
cation bandwidth, and where the searchers carry out most of the computing. Dasgupta [11]
illustrates why automatic target recognition by Unmanned Aerial Vehicles (UAVs) is more
challenging than the stigmergic behavior of ants. There exists an absence of physical
medium for UAVs to leave trails for other agents. Furthermore, Dasgupta reiterates that
unlike for ants, the target is often mobile. As such, the pheromone trail cannot be reused
for all future travel to the target, unlike ants searching for food. Lastly, the random move-
ment of ants is not suited for UAVs due to flight path conflicts, and other search paths
with few turns might be more effective. It is important to extract what we can from these
nature-based models while recognizing the limitations that UXSs must work within.

Swarm simulation research done at the Air Force Institute of Technology examined the
interactions between agents. The main goal of its research is to investigate swarm be-
havior which emerges autonomously. Communication between agents in this work was
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kept to a minimum, limited to contact only with their closest neighbor and limiting the
information passed to only their current position and vector. The agents determine their
behavior primarily through implicit communication, very similar to the ant pheromones
seen in nature [12]. Furthermore, Banks and Vincent [13] explored the trade-offs between
deterministic search and various stochastic search models. Their research highlighted the
importance of the target distribution in determining the effectiveness of search patterns. If a

priori information existed indicating target clustering, then many of the bi-phase strategies
proposed by the authors proved more effective, as they switched to more intensive search
patterns when a target was discovered. When no a priori information was available, or little
clustering, then deterministic patterns proved to be more effective [13].

The ability to control robot swarm formations is in development, and some solutions ap-
pear to be feasible. Barnes et al. [14] investigated UXSs control using potential fields and
proposed a model which scales to various swarm sizes and models. Their method utilizes
potential functions together with limiting functions to successfully control robot swarm for-
mations. It also supports scalability, multiple formations, and heterogeneous swarms, while
remaining computationally inexpensive. This provides a foundation for the formations that
will be utilized in swarm search models.

1.2 Research Objectives
It is the goal of this research to provide an analytic and simulation framework for design-
ing, simulating, and assessing swarm search capabilities. This framework would act as a
sandbox capable of exploring numerous distinct swarm search scenarios including different
search patterns, different sensors and detection curves, different agent and target character-
istics and behaviors. In doing so, we hope to help shape emerging technology and agent
designs, help develop and investigate search strategies that will aid operators in the field,
and help provide decision makers with the necessary tools to make informed decisions on
resource allocation and search doctrine.

1.2.1 Research Questions
When developing this framework, there are many problems and questions that we can ad-
dress. Most of these questions include challenges that makes for complex implementation.

3



The following provides a list of potential questions research in this area can address, and
some of the technical challenges associated with them.

1. What search patterns provide the most effective means of finding a target? Are there
significant advantages to using one over another?
Technical Challenges:

(a) Coordinating search between many agents
(b) Modeling learning for an intelligent adversary

2. Which Measures of Effectiveness (MOE), i.e., time to first detection, probability of
detection, etc., gain the most advantage from employing many UAVs?
Technical Challenges:

(a) Providing the decision maker with the information necessary to make an in-
formed decision on the numbers and capabilities of UXSs

3. Is it better to partition the search area or coordinate search for multiple looks?
Technical Challenges:

(a) Determining optimal allocation of limited resources

4. Does leveraging multiple types of sensor provide a distinct advantage? Does one
type of sensor distinctly outclass others?
Technical Challenges:

(a) Acquiring accurate models of lateral range curves for multiple sensors
(b) Computational requirements of using multiple sensors in a single model

5. What advantage does each additional UXS provide in prosecuting underwater targets,
from detecting and identifying to tracking and engaging?
Technical Challenges:

(a) Developing a model capable of analyzing a wide range of factors over multiple
levels

6. Is a significant advantage gained from employing multiple UXSs across multiple
domains? Does one type of vehicle greatly trump the others?
Technical Challenges:

(a) Developing heterogeneous model to account for different searcher and sensor
performances

7. What level of communication is required between search vehicles? Does each vehicle
need to be in constant contact with all of the other vehicles? Does a hub-and-spoke

4



or closest neighbors scheme provide enough efficiency?
Technical Challenges:

(a) Developing limited peer-to-peer and mesh communication schemes and algo-
rithms to model them

8. Can we develop a scalable model capable of being implemented for any number of
UXSs?
Technical Challenges:

(a) Developing algorithms for real time partitions of the search area based on the
number of UXSs

(b) Developing algorithms for communications between agents
(c) Computational requirements of modeling many UXSs operating independently

While each of these questions provides a direction for further research, this thesis focuses
on questions one, two, three, and eight. By developing a flexible framework capable of
providing statistical analysis on a wide range of search patterns and configurations, this
thesis provides a tool capable of addressing the technical challenges enabling the analysis
necessary to answer those questions.

1.2.2 Benefits of the Study
The main contribution of this research is a simulation framework based on MATLAB ca-
pable of running search simulations incorporating large numbers of searchers. This frame-
work incorporates numerous aspects of swarm search, including agent and target speed,
search area, and the number of searchers, implemented as configurable modules, such as
searcher, target, and detection modules. This provides the user with relevant data on what
factors impact the search, in order for them to be able to make informed decisions. This
framework includes the ability to perform further analysis on many-agent searches in a
wide variety of applications, including against multiple and/or moving targets. This tool
allows the development and refinement of search strategies for varied situations, in addi-
tion to providing a means of sensitivity analysis to assess the benefits gained by changing
aspects of the search, such as the number of searchers. We seek to provide the decision
maker with a quantitative assessment on the advantages of employing additional resources,
as well as what factors provide the greatest benefits to assist in future search platform
design and development. Such analysis supports operational stakeholders that perform
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searches on regular basis, by reducing search time, reducing resource requirements, and
increasing probability of detection. Furthermore, the framework is not restricted solely to
searching for underwater assets. By utilizing a different target module, the United States
Coast Guard could simulate search and rescue operations for personnel lost at sea, or the
searcher module could be altered to guide the deployment of multiple UAVs searching
for submarines forward of a strike group. The MATLAB simulations proposed in this the-
sis may greatly benefit many groups while expanding the potential of swarm search and
detection.

1.3 Scope, Limitations, Assumptions
1.3.1 Scope of Thesis
This thesis addresses the development of a scalable simulation and analysis model for
swarm searches. We approach this task by developing a modular framework, providing
the capability of quickly changing any part of the search model without affecting the per-
formance of the rest of the model. We also demonstrate the statistical analysis necessary
to determine how factors impact our model. In order to accomplish this, we demonstrate
our framework through the development and analysis of three case studies involving the
analysis of searcher performance and their effectiveness relative to each other. Previous
works demonstrate that the capabilities exist to perform searches utilizing large numbers
of agents [15]–[17]. We seek to utilize this capability to develop a method to analyze the
relative importance of the factors that contribute to an effective swarm search.

1.3.2 Limitations
• This work does not attempt to determine the most effective search strategies for

swarms. Rather, this thesis provides a framework where different models may be
designed and assessed.

• This work does not experiment with different sensors models. Such analysis can be
investigated through the use of the detection module which simulates the sensor
and detection process.

• This work does not investigate different experimental designs. Rather, we utilize a
Nearly Orthogonal Latin Hypercube (NOLH) design to investigate the effectiveness
of our framework and leave exploration of other statistical designs to future work.
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1.3.3 Assumptions
A number of assumptions further limit the scope of this thesis:

• Space and time are discrete.
• UAVs possess identical capabilities and characteristics.
• UAVs possess perfect knowledge of their own locations.
• UAVs can communicate without error or delay.
• UAVs do not need to perform evasive or counter-detection maneuvers.
• There are no environmental effects that affect flight paths.

1.4 Thesis Organization
This chapter introduced the problem, including the motivation and relevant background of
utilizing UAV swarms in the search for small or hard to detect targets. In Chapter 2, we
describe the scenario we used for our research in addition to developing the simulation
model. In Chapter 3, we describe the experiment that we conduct and explain the factors
considered in our model. In Chapter 4, we present the results of the simulated case studies
demonstrating the capabilities of our framework. In Chapter 5, we present the conclusions
of our research and provide recommendations for future research.
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CHAPTER 2:

Model Formulations

This chapter contains a brief introduction to search theory followed by a description of the
swarm search scenario; it concludes with a detailed outline of the simulation and analytic
framework explored in this thesis. The framework is flexible enough to model numerous
different scenarios, while maintaining the complexity required to garner useful insights
from our simulations. We capture the insights that a stochastic model provides by utilizing
the Monte Carlo method in generating replications.

2.1 Background
Throughout the twentieth century, search theory has provided valuable tools to decision
makers. The development of unmanned systems capable of acting both as the hunter and
the hunted has motivated many search problems. Search, at its heart, is information gath-
ering and relies primarily on two components: uncertainty in the location of the target and
uncertainty in the information provided by sensors [18]. In the ideal situation, the searcher
knows the exact location of the target and possesses an ideal sensor. The definite-range
law, or cookie-cutter, sensor is an ideal sensor, always detecting the target when within
range. Introducing location uncertainty but maintaining the ideal sensor provides the basis
of our initial search problems. These coverage problems often seek to maximize one of two
objectives: the time to first detection or time to complete coverage. It is in this context that
the concept of an exhaustive or ideal search becomes clear. A search is considered to be
ideal if the searcher utilizes an ideal sensor, and does not overlap its coverage nor expend
search effort outside of the search area [6]. In most real-world situations, it makes sense to
picture this search pattern as a lawnmower cutting grass row by row as generally it is not
possible to jump over large areas instantaneously. As Washburn [6] discusses, assuming
an ideal search and sensor results in an upper bound on the performance of realistic area
searches. In Equation 2.1, v is the velocity of the searcher, w is the searcher’s sweep width,
A is the total search area, t is time, and Fideal(t) is coverage ratio, namely the percentage of
the area searched for a single searcher conducting an ideal search as a function of time.

9



Fideal(t) =
vw
A

t (2.1)

We replace vw
A with γ , also known as the coverage rate, to simplify the expression. In

cases where repeated coverage of the search area must be performed in order to detect the
target, the coverage factor may exceed one [19], and we define t∗ as the time to perform
one complete coverage of the search area. Furthermore, in the case where we utilize an
ideal search and sensor, which we assume for the remainder of this section for illustrative
purposes, the coverage ratio bounded by 1 is also the cumulative detection probability as
seen in Equation 2.2 and Figure 2.1.

PD,ideal(t) = min(F(t),1) =

{
γt, t ≤ t∗

1, t > t∗
(2.2)

By combining the search rate of multiple searchers, we are able to expand the above expres-
sions to incorporate these M searchers as seen in Equation 2.3 and illustrated in Figure 2.2,
where γi is the coverage rate of agent i.

Fideal(t) =


M

∑
i=1

γit, t ≤ t∗

1, t > t∗
(2.3)

Conversely, if the agent randomly moves through the search area, significant overlap in
coverage may occur. During the initial stage of the search, there is very little area that has
been covered, so there is only a small likelihood of overlap of the coverage, but as more of
the search area is covered, the random search ends up overlapping more and more of the
search area [19]. This wasted search effort makes random search considerably slower at
ensuring that any specified fraction of the search area is covered. Random search provides
us with a lower bound on intelligent searches, as represented by Equation 2.4.

Frand(t) = 1− e−γt (2.4)
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Figure 2.1: The linear increase of the coverage factor and Probability of Detection as time
progresses a single searcher. Whereas the coverage factor linearly increases past one indicating
multiple coverages of the search area, the probability of detection represents the probability of
having detected the target, and is bounded by one.

Figure 2.2: The linear increase of the coverage factor as time progresses for one, two, three, and
four agents. This type of ideal search provides the upper bound on coverage rate.
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It is possible to do worse than random search, but this involves a deliberate attempt to
achieve a low detection probability. Similar to the ideal search, we can expand the equation
to incorporate multiple agents by combining the efforts of their search as seen in Equa-
tion 2.5. As expected the coverage factor increases more slowly as time progresses than
that for the ideal search as seen in Figures 2.3 and 2.4 [6].

Frand(t) = 1− e−∑
M
i=1 γit (2.5)

The next step in search modeling is to characterize the detection model, that is, identify
the uncertainty in the sensor. In other words, just because the sensor passes over the target
does not mean that the target is necessarily detected, and similarly, just because the sensor
detects a target does not mean that the target is actually at that location [6]. While the
aforementioned models assumed a perfect sensor, this extension of imperfect detections
provides significantly more variability to the model and makes it necessary to determine
where and for how long to look (in continuous cases). Since we are limited by the amount
of resources available, optimized allocation becomes very important. The development of
unmanned systems potentially allows for large numbers of agents to be employed simul-
taneously in searches, leading to the investigation of similar searches done in nature. As
a possible avenue for further exploration, one can study foraging theory, which attempts
to mimic the hunting methods of various species [13], [20]. A potential application to
many unmanned systems may also be seen by ant behaviors where each agent relies on
“pheromones” in order to determine its own role in the search as well as to communicate
with other agents participating in the search [21].

For our research, we build a MATLAB framework capable of investigating these differ-
ent models. By implementing a modular design, we enable the rapid exploration of a
wide range of models and parameters. This structure decomposes the model into modular
sub-functions, with key aspects of the model passed to these sub-functions. This allows
restructuring of the model, either through changes to the imported data, or through modifi-
cation of one or more of the sub-functions to alter the behavior of one or more aspects of
the model. We then explore the robustness of our model by implementing several different
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Figure 2.3: This �gure demonstrates the sub linear increase of the coverage factor as time
progresses for one, two, three, and four agents. This type of search provides the lower bound
on coverage performance.

Figure 2.4: The di�erence between the upper bound of the ideal search with the lower bound
generated by the random search.
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swarm search model types, and investigate the ability to statistically analyze our resulting
data.

2.2 Motivating Scenario
We present a hypothetical scenario from OA4602: Joint Campaign Analysis, Winter 2014,
that provides a context in which a future capability of swarm unmanned systems to conduct
search missions may become a necessity [22]–[28].

2.2.1 Background
In the years leading up to 2025 there has been a continuing growth of economic compe-
tition and demand for energy resources between China and Japan. China demonstrates an
increasing mercantilist behavior, and territorial expansionism in their pursuit of natural re-
sources. as well as strengthening ties to other Asian countries to include Taiwan, North
Korea, and Russia. Japan responds to these actions by developing a larger, more capable
defensive force that is less reliant on the United States, as well as strengthening ties to
her U.S. ally through increased number of exercises and multiple joint bases. The United
States has also increased development of its logistic infrastructure in the western Pacific, to
include having secured additional basing rights. Furthermore, ASEAN is researching new
methods to counter Chinese aggression in the area.

2.2.2 Scenario
As large portions of shipments of natural gas from Indonesia and Malaysia are redirected
to China to support its growing domestic consumption, Japan’s discovery of large natural
gas and oil deposits in the East China Sea comes at a critical time for the country. China
immediately claims sovereignty over these natural resources and threatens the use of force
against Japan if these claims are not respected. The situation continues to escalate on both
sides, with Japan deploying naval forces to protect their ships, while China deploys its
subsea and air assets in shows of force, and warns the United States and Japan of their in-
tention to quarantine Okinawa if there continues to be infringements into China’s claimed
economic exclusion zone resources. In addition, the United States, Philippines, Indonesia,
Japan, Singapore, and Vietnam all register their protests against Chinese “safety inspec-
tions” of tankers traveling through the South China Sea, which is a clear infringement of
freedom of the high seas.
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2.2.3 Objective

United States Pacific Command (USPACOM) has been tasked with responding to the loss
of freedom of navigation, and if China begins a full denial campaign, establishing sea
and air control as well as defending land bases in the region. In efforts to accomplish this
goal, USPACOM tasked Pacific Fleet (PACFLT) to develop an Operation Plan (OPLAN) to
ensure freedom of navigation, monitor and counter potential deployment of Chinas South
Sea submarine fleet into the East China Sea, and engage and counter Chinese surface forces
if hostilities arise.

China’s submarines, possessing one of the deadliest anti-ship missiles, pose a significant
threat to the United States and Japanese surface fleets. As such, it is vitally important to
counter the Chinese submarine fleet in the East China Sea. Currently the United States
possesses a strong advantage in the undersea realm, and with the forecasted acquisition
schedule for all parties involved, it is imperative that the United States retains that advan-
tage. Furthermore, the greatest challenge facing the Fleet is the time it takes to hunt the
Chinese submarines, given the immense search area of the East China Sea. Any enhanced
ability to localize the Chinese submarines greatly reduces the time required to counter their
forces.

Numerous developments in the command and control of unmanned systems creates the
ability to utilize large numbers of UAVs in order to search for enemy submarines with
swarms. Furthermore, advancements allow miniaturized detection technologies to be
mounted on smaller vehicles, making it possible for many of these systems to deploy from
smaller ships, rather basing them on aircraft carriers. It is necessary to determine if it is
more effective to leverage these capabilities by employing large numbers of smaller, but
nominally less capable, unmanned systems to search for their targets, rather than employ-
ment of a few larger, but potentially more capable search units.

The goal of the presented study in the context of this scenario is to provide the tools to
USPACOM to determine effective submarine prosecution tactics with a large number of
search assets, as well as the necessary capabilities that future UAVs must possess to ef-
fectively carry out their mission. In this theme, we seek to provide a framework to allow
the testing of search tactics and the effectiveness of various UAVs platform and sensor
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characteristics in a variety of environments and roles. USPACOM’s interests include, but
are not limited to, how the following parameters impact the time to first detection of sub-
marines: the number of search agents they should include in their searches; the dimensions
of their partitioned search areas; the speed of the search agents; the search tactics and/or
search patterns employed; and the enemy’s behavior and capabilities. For generality and
to avoid classification issues, we use generalized searchers and sensor models for the pre-
sented analysis. In this manner, we build the framework to address many situations without
limiting ourselves to a particular platform and sensor type, although specific insights may
be obtained by use of actual specifications of systems of interest.

2.3 Searcher Descriptions and Parameters
In order to develop a robust framework, we leave the characteristics of the search model,
including searcher speed, detection models, and number of searchers, as variable param-
eters. We analyze our models assuming a specified large number of search agents, each
with a constant search speed and using a triangular detection curve for their probability of
detection. We choose to utilize all searchers with the same speed to represent a search with
multiple agents of the same type performing a coordinated search. Similarly, the triangular
detection curve is a simplified yet representative model of many sensors that exhibit better
detection performance the closer the target is to the sensor, such as radar and sonar. In this
generic model, the probability of target detection decreases linearly from 0.2 to 0 as the
horizontal range increases from 0 to 20 NM, as illustrated in Figure 2.5. Furthermore, the
searcher performs one detection attempt per timestep, which is set to one minute for this
study.

Similarly, we assume that the single target we model is generic in order to demonstrate
the adaptability of our framework. The target possesses no knowledge of and is unable to
detect the agents searching for it, but assumes that it could be hunted. Therefore the target
behaves in an erratic manner, randomly changing directions but maintaining a constant
speed throughout each scenario. Future work can investigate alternate models of target
behaviors, to include reactive strategies that might seek to evade the search.
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Figure 2.5: A graphical representation of the sensor we utilize in our models. We model our
sensors by a triangular curve with the highest chance of detection directly below the agent,
decreasing linearly to 0 at 20 NM away.

2.4 Model Assumptions

It is generally impossible or impractical to model every aspect of a system. Not only
are there too many variables that might affect the outcome, that complex of a model may
provide little useful data to a decision maker. Therefore, we make assumptions to simplify
the model in order to hopefully provide useful insights for the user.

• Static Search Area: We restrict the location of the target within a static search area,
and the search area does not expand nor change shape as the scenario progresses. We
utilize a rectangular search area to simplify the movement of the agents and minimize
overlap of search effort.

• Triangular Detection Curve: Rather than implementing a detection curve for a spe-
cific searcher and sensor type, we utilize a generic and fixed detection curve as an
initial detection model which we can change to determine how different sensors per-
form in the search environment.
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• Model analog detectors as discrete elements: Since the model requires computa-
tional implementation and actions occur during discrete timesteps, it is not possible
to easily model continuous elements. We therefore model analog and continuous
processes, such as movement of agents and the occurrence of independent detection
opportunities, to happen once each timestep, which is set to one minute for this study.

• Weather and sea-state do not significantly impact the search model: We assume that
weather and sea-state conditions do not effect factors such as sensor performance,
velocity, and spacing; by doing so, we reduce unnecessary complexity in the search
model that might confound additional factors.

2.5 Development of Search Model
2.5.1 Search Patterns
In our analysis of the scenario, we begin by investigating three different search patterns. In
the first search pattern we utilize multiple agents searching abreast in a lawnmower pattern
as illustrated in Figure 2.6. In this model, all of the agents start in the lower left corner,
maintaining formation to the starboard side of the guide. The guide acts as the focal point
of the searchers’ positions in the pattern, allowing the searchers to maintain the pattern
by aligning to the starboard side of the guide. This greatly increases the effective sweep
width of the sensor, allowing for a much faster coverage of the search area. The agents
move in a typical lawnmower pattern, utilizing top-to-bottom sweeps of the search area,
wheeling when reaching the top or bottom of the search area so relative position from the
guide remains unchanged. After a complete sweep of the search area, the searchers reverse
direction and begin the next sweep from their final position vice resetting to the bottom left
corner of the search box.

In the second search pattern, we once again utilize multiple agents searching in a lawn-
mower pattern but rather than agents moving abreast, they form a column with each agent
following the agent directly in front of them as seen in Figure 2.7. This causes the effec-
tiveness of the sensor to increase, as each agent covers the same area providing multiple
possible detections for the target on each pass. While this approach covers the area more
slowly than the first pattern, it provides a much higher probability of detection on each pass.
The general shape of the lawnmower search remains unchanged, starting at the bottom left
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Figure 2.6: Agents Abreast search pattern with four agents spaced one unit apart. The guide
agent, which the other agents use to maintain their position in the search pattern is highlighted
in magenta; the target is denoted as the red ×.

corner of the search area and moving to the right. When the sweep is complete, the agents
begin their next sweep from their last position.

In the final canonical search pattern explored in this thesis, we utilize multiple agents mov-
ing in a random fashion to search for the target as illustrated in Figure 2.8. Once again
we start all searchers in the bottom left corner aligned abreast with their initial direction
being towards the center of the search box. Each agent moves at a constant speed changing
direction within a limited bearing from its current heading. When a searcher reaches one of
the boundaries of the box, it changes direction towards the center of the search area before
continuing its random movement. While this pattern is not as efficient in ensuring that the
entire search area is covered, such a pattern makes it more difficult to predict where the
search agents will be possibly providing a tactical advantage in hostile environments.

2.5.2 Measures of Effectiveness
For our framework, we are interested in assessing the effectiveness of the given search
approach. As such, we center our model around generation of quantitative measures of
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Figure 2.7: Agents in Column search pattern with four agents spaced one unit apart. The guide
agent is magenta; the trailing agents are yellow, green, and blue, respectively. The target is the
red ×.

performance that will help us to ascertain the efficacy of our search. Measures of perfor-
mance represent the execution of specific aspects of the model; however, one must often
manipulate or combine the measures of performance to generate relevant measures of ef-
fectiveness. It is important to carefully determine our measures of effectiveness, as often
times they can be misleading [29]. Figure 2.9 demonstrates how we can utilize a fitted
Cumulative Distribution Function (CDF) to measure the effectiveness of different search
configurations. Analysis of the variance for the design points lets us concentrate our fo-
cus on the expected time to first detection as this provides us with a popular measure of
effectiveness in search theory literature.

2.6 Framework Development
In this section we expand on the MATLAB software implementation we develop to support
the proposed framework. Figure 2.10 illustrates a block diagram of the component soft-
ware programs forming the structure of our framework. Each block represents a program
or module with each level contained within its parent function but operating independently.
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Figure 2.8: Random Walk search pattern with four agents spaced six units apart. There is no
guide agent. The target is the red ×.

Figure 2.9: CDF changes as we increase the number of agents utilized during a random search.
As expected, the performance improves as more agents are utilized, moving the curve up and to
the left. This indicates that we have a higher probability of �nding the target faster the more
agents we use.
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The arrows between blocks indicate the flow of model characteristics from the main func-
tion to the sub-functions as well as the results from searches to the main function.

2.6.1 Program Integration
The foundation of the framework is the main.m function. This function works to link the
experimental design to the search model and the search model to the statistical analysis.
This function begins by importing initial conditions such as the number of agents, the
speed of the agents, and the size of the search area from a comma-separated value (.csv)
file containing supporting data. This approach allows for significant flexibility in the design
of any search model, since the design of the software is not intended to limit the number
of factors investigated. For example, if the analysis of interest in a given search model
requires varying only the number of searchers and number of targets, then only those data
are necessary as inputs in the .csv data file. Similarly, if we change a module and thus
need to include a factor (e.g., the velocity of the searcher), we can add that to our design
changing the input data .csv to include that factor, but do not need to change any other part
of the framework.

The main function also controls the Monte Carlo process by designating the design point
for which we are currently generating replications. This is accomplished by fixing the de-
sign point, then passing the design point characteristics to the search function to generate
the replication. After each replication, the search function passes the output response vari-
ables back to the main function for collating. When the requisite number of replications
are complete, the main function saves the results both as a MATLAB-readable file serv-
ing as a backup and as a .csv file for later analysis. The MATLAB code we use to generate
these replications and collate response results can be seen in Codeblock 2.1. After the main
function saves the data from the design point, it begins on the next design point, appending
the data to the previous files.

2.6.2 Replication Generation
The search module coordinates the individual replications. The search module utilizes
the information in the design point to establish the search area by initializing a data structure
to contain searcher and target data. It calls sub-functions to populate these structures with
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Figure 2.10: Block diagram of the framework developed. Each block represents a module or sub
program with the arrows indicating the direction of information �ow between the modules.

dp_char=sim_char (j , : ) ;

% The f o l l o w i n g loop u t i l i z e s p a r a l l e l t h r e a d s t o pe r fo rm t h e s e a r c h
% f u n c t i o n . I t p a s s e s on to t h e f u n c t i o n t h e c h a r a c t e r i s t c s o f t h e
% d e s i g n p o i n t , a s w e l l a s i d e n t i f y i n g which model t o use , and whe the r
% t o d i s p l a y g r a p h s .
parfor i=1: runs

[ timestep , found , pass ]= search ( dp_char , modeltype , dispyn ) ;
% The f o l l o w i n g l i n e s c o l l e c t d a t a t o be saved t o CSV and . mat f i l e
% so t h a t f u r t h e r a n a l y s i s o r r e p l i c a t i o n can be a p p l i e d .
jmpdata ( k+i , : ) =[dp_char , j , i , timestep ] ;

Codeblock 2.1: The main.m function leverages multi-core processors to process multiple
replications at a time, greatly reducing the runtime of the model.

initial position and movement data for the searchers and targets. Notice in Codeblock 2.2
searcher and target position as well as movement data are consolidated into a single data
structure. This simplifies passing data to other sub-functions; as long as the data do not
change in the sub-function they are not updated in the functional memory, thus saving
space, time, and memory [30], [31]. Furthermore, these structures are not limited to just
position and movement data, but can also include information such as current mission or
behavior. The search function implements the search process by utilizing sub-functions to
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determine detections, ascertain change in position of agents, and provide a visual represen-
tation of the search. The search function itself calculates the total number of detections,
iterates the timestep, updates the target location, and returns to the main function when and
if the target is detected. The search function controls and coordinates the different aspects
of the search, such as the initial agent positions, agent movement, and target detections,
returning to the main function the time that the target was found, the total number of agents
that found the target, and the total number of missed and successful detections.

% I n i t i a l i z e s e a r c h e r p o s i t i o n based o f f t h e model t y p e used .
[ ag_data { 1 , 1 } , ag_data { 2 , 1 } , rtlc ]= searcher_initial_posit ( dp_char , modeltype ) ;

% I n i t i a l i z e t a r g e t p o s i t i o n .
[ ag_data { 1 , 2 } , ag_data {2 ,2} ]= target_initial_posit ( dp_char ) ;

Codeblock 2.2: Initialization of the searcher and target locations area is called from the search.m

function, and handled by the respective sub-functions.

The sub-functions that control the initial position share the same role for both searchers
and target but vary slightly in their execution. Both functions utilize the design point char-
acteristics to determine initial position inside of the search area and their initial heading.
Whereas the target position sub-function generates a random position for the target,
the searcher position sub-function determines their starting positions based on their
spacing from the bottom left corner of the search area. Both of these modules can be easily
altered or replaced in order to capture a different aspect of initial target or searcher distri-
bution. For example, if we have intelligence indicating the target’s initial position is biased
towards one side of the search area, we can incorporate that into the target position

sub-function. Similarly, if we have agents arriving from multiple locations, we can initial-
ize their starting locations in multiple spots around the search area. These sub-functions
shape the initial picture of the search environment.

We determine the number of hits on each timestep through the detection sub-function.
This sub-function receives all of the positional information of both the searchers and the
targets from the search function as well the design point characteristics. Using this infor-
mation, it determines the Euclidean distance from the target to each searcher, then utilizes
a sensor sub-function to determine the probability of detection for each agent based off
the distance and the sensor characteristics. Once the detection sub-function ascertains
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the agents possessing the potential of detecting the target, it calculates which of these suc-
ceed. Then the sub-function returns the searchers which successfully detect the target and
the searchers which potentially detect the target to the search function. This can be ex-
panded further in several ways, though reserved for future work. The primary aspect is the
introduction of false alarms where there is a possibility on each timestep for the searcher
to generate a detection even if the target is not there which accurately reflects real-world
situations. Another extension includes requiring multiple detections for a positive identi-
fication of the target representing identification and localization efforts. The detection

sub-function carries out this detection process and returns to the search function which
searchers detect the target during each timestep.

The heart of the search pattern resides in the movement modules. The searcher and tar-
get movement modules determine how the searcher and target move during each timestep.
These sub-functions receive all information about the model from the search function and
determine the positional shift of the agents for the next timestep. As seen in Codeblock 2.3,
these sub-functions do not update the position of the searchers or targets, but rather simply
compute the change in their positions, allowing the search function to perform the update.
Furthermore, the sub-functions track the heading of the searchers and targets. By chang-
ing how the agents move on each timestep, one can change the search pattern or even
the behavior of the agents. Furthermore, since all aspects of the model are passed to the
movement sub-functions, agent behavior can change based off of any aspect of the model.
For instance, it is possible to have searchers converge on a target if an initial detection is
made, or to simulate the target responding to a detection with evasive maneuvering. The
movement function provides the implementation of the search strategy employed in the
simulation model.

% T a r g e t t r a v e l d e t e r m i n e s t h e movement v e c t o r f o r t h e t a r g e t , and t h e
% n e x t l i n e adds t h a t v e c t o r t o t h e c u r r e n t p o s i t i o n o f t h e t a r g e t ,
% u p d a t i n g t h e t a r g e t ' s c u r r e n t l o c a t i o n .
[ ag_data {2 ,2} ]= target_movement ( ag_data { 2 , 2 } , dp_char ) ;
ag_data {1 ,2}= ag_data {1 ,2}+ ag_data { 2 , 2 } ( 1 , 1 : 2 ) ;

Codeblock 2.3: The movement.m sub-functions generate matrices that contain the change in the

x and y direction for every agent over the current timestep and returns this to the search.m

function. Search.m then processes the movement by updating the x and y location of the

searchers.
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While the functions and sub-functions listed above provide the core of the framework,
additional features may be added without disrupting the simulation. For example, we im-
plement a visual sub-function into the search function as seen in Codeblock 2.4 which
provides a graphical, animated representation of the search. While this feature does not
directly affect the search outcome, it provides a useful tool in debugging the program as it
shows the current target and searcher locations, as well as their intended movement over
the timestep. This can be expanded to generate movie clips of simulated target movement
for analysis at a later time.

i f dispyn==1
[ timestep_star ]= visual ( dp_char , ag_data , hit ) ;

end

Codeblock 2.4: The search.m function calls the visual.m function when a graphical

representation of the search is desired.
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CHAPTER 3:

Experimental Design

Having previously constructed a near real-world situation of interest to help motivate our
investigation, this chapter continues by further developing the specific scenario and out-
lining the factors that compose the parameters of the proposed swarm search models. By
implementing several search patterns, we demonstrate the flexibility of the framework in
the exploration of different search tactics and swarm characteristics.

3.1 Experimental Design
3.1.1 Real-World Modeling
We begin our research by investigating an abstraction of one potential scenario of inter-
est to USPACOM demonstrating the validity of our framework. The canonical operational
scenario involves a single target, e.g., the enemy submarine, moving randomly in a prede-
termined representative rectangular search area. In our scenario we attempt to estimate the
time it takes our searchers to detect the target. This scenario is a simplified representation
of searching for a submarine utilizing a swarm of UAVs and relates to a wide variety of
situations where a hidden target must be found. Other likely situations where a related
scenario would be encountered include receiving intelligence of and attempting to localize
a signal of interest in urban operations or a search attempt for a person and/or vessel lost
at sea. In the nature of our scenario, we attempt to model the search and localization of a
submarine in which we have intelligence on the approximate location of the target.

Alteration of the model may be helpful in gathering insight on several other real-world
scenarios of interest to operational commands such as USPACOM. By defining a search
region of interest in the operational area and setting our Measure of Performance (MOP)
as the number of targets able to enter the area of interest, we are able to model the escort
of a high value unit, such as a carrier strike group, through contested waters. This alternate
scenario would pose an intrinsically different problem than the previous model as we are
attempting to clear an area and then prevent further targets from entering, whereas, in the
previous model we are solely concerned with finding the target as quickly as possible.
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Other variants of the search problem which may be easily addressed by the proposed frame-
work include modeling search effort required to clear a minefield; for example, by increas-
ing the number of targets in the search area and making them stationary. In this particular
model, the primary concern might be the percentage of targets found over a period of time
or the time it takes to clear a certain percentage of the targets.

Analysis of the above search scenarios provide the decision maker with valuable informa-
tion; our framework can quickly adjust from one scenario to the other by using different
modules to initialize the target and searcher positions. We focus on the first scenario, local-
izing a single submarine, for the purpose of our research, and leave the two other proposed
models for future work.

3.1.2 Model Construction
In order to construct our proposed swarm search model, we need to develop an abstraction
of the real-world scenario. While the specific shape of the search area changes, most search
areas are generalized to a rectangle. Therefore, we establish the search area in our model
as a rectangular box where the exact dimensions considered are controllable factors with
little loss of fidelity. While the search area defines boundaries for the search agents, the
target does not possess knowledge of the boundaries and thus travels freely out of and
back into the search area. This is typical of searches performed in open waters, although
less representative of searches conducted in areas where physical boundaries determine the
search area. Note that this latter limitation can be addressed by imposing similar constraints
on the target preventing its ability to traverse specific boundaries. In essence, the search
area represents the total area that we believe the target to be in and delineates where we
concentrate our search efforts.

Since the search area is based on the suspected location of the target, we assume the intelli-
gence is reliable and the target is located within the search area when we begin our search.
We further assume there is some uncertainty as to the exact location of the target; the target
does not start in the center but rather is (uniformly) randomly located inside of the search
area. The target is unaware when it is within detectable distances of the searchers and
thus does not change its behavior throughout the scenario. However, the target assumes
searchers are attempting to locate and track it, and thus it continues to move in a defensive
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manner by randomly altering course to potentially confound attempts to predict its move-
ments. In other words, the target behaves in a semi-intelligent but nonreactive manner.

The starting location of the search agents can be arbitrarily determined as we are able to
orient the search box relative to the initial approach to the target area. Therefore, we orient
the search area so that the agents begin in the bottom left corner, heading towards the top
of the box. Restricting the guide agent to inside of the search area for the Agents Abreast
pattern while all agents are restricted to inside of the search area for the Agent in a Column
and Random Walk pattern. We also know the endurance of our search agents, providing us
with a termination point at which the agents must return to their recovery platform.

3.2 Simulation Construction
As discussed in Chapter 2.6, MATLAB is the primary tool used for modeling this scenario.
With the framework in place to utilize the Monte Carlo method to explore different design
points, we develop the modules to construct our search area as well as control the agents
as they perform their searches. Since the search agents in this study are not explicitly
representing specific UXSs, recall that we consider a nominal fixed search speed for all
search agents. The first two modules for initial development and implementation include
one managing the initial setup of the search area and another dictating the movement of the
search agents and targets.

We develop two separate functions to initialize our agents’ starting positions, one for the
target and another for the searchers. In this work, we initially assume no prior intelligence
to prioritize the search effort, but make the framework general enough to allow non-uniform
prior probability. Since we assume the target starts at a random location, its starting position
is randomly chosen with no bias to any portion of the search area, i.e., with a uniform
distribution, as can be seen in Figure 3.1.

Once the location of the target is set, we randomize the target’s heading. We initialize
the searchers starting locations by setting the guide searcher’s location to the bottom left
corner of the search area with the remaining agents positioned relative to the guide. For
the Agents in Column pattern, the following agents are spaced to the rear of the guide,
while for the Agents Abreast and the Random Walk patterns, the agents start abreast of
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Figure 3.1: Unbiased nature of the target's starting location in a 25 by 25 search area over
10,000 replications. Each red × represents a starting location with the darker marks representing
overlap in the marker location.

each other, extending to the right of the guide’s location. In the Random Walk pattern, the
initial headings of the searchers are configured towards the center of the search area.

We need to develop another major component for implementation into the MATLAB
framework, that is, the movement modules. The movement modules control where the
agents begin the next timestep, and as such, determine the search pattern that the searchers
perform as well as the detection avoidance strategy of the target if one exists. As with
the initialization functions, we use separate modules for target and searcher movement.
This modularity supports the different behaviors being exhibited between the searchers’
search patterns and the target’s (potentially evasive) maneuvers. As such, these modules
are the most logic-intensive; they require tracking of some or all previous state informa-
tion in most cases. In order to simplify execution of movements, updates to locations are
performed using a series of logical checks. The primary check consists of determining if
the searchers are inside the search area, which, if successful, then the searchers continue
with their associated movement; for both cases of Agents Abreast and Agents in Column,
the agents continue to move in the current direction of travel as dictated by the boundary
checking logic, whereas for Random Walk, they choose another random direction limited
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by heading. If a given searcher is outside of the search area, then we compute its next
course of action depending on which boundary it encounters. For example, if the searcher
is at the top or bottom of the search area, this involves moving horizontally to continue its
search pattern; if it is at the left or right boundaries, movement involves changing direction
ensuring the search agent begins its next pass still within the search area. In the case of
Random Walk, if the searcher is outside of the search area, it turns a random amount to-
wards the center and moves in that direction. The target movement module is identical
to the searcher movement module for Random Walk with one exception, as it does not
change direction towards the center of the search area if the target finds itself outside of the
box. Since the movement modules are nominally the most complex modules, the funda-
mental elements of the search patterns employed by the swarm are characterized in these
movement modules.

3.3 Design of Experiments
We seek to explore how the different factors, such as number of search agents, search
speed, detection performance, and their interactions, affect the search capabilities for a
given search method. One exhaustive approach to identify the dependence of the search
performance on such factors could require varying each factor one at a time; this would
allow us to analyze how each factor performs with all other factors at every other possible
value. While this may appear to be the most complete method, such an approach quickly
expands beyond feasibility for more than a few factors of interest. For example, with eight
factors at ten levels each, we would have 108 design points not including any replications.
By intelligently designing the simulation experiments, we can achieve nearly the same
level of statistical fidelity with a fraction of the design points [32], [33]. One method of
investigating these factors in the design of experiments (DoE) is utilizing a two-level, or
2k screening factorial design, which investigates each of k factors at its low and high lev-
els [29]. We can supplement this with a central composite design, which includes the star,
or axial, points of the design, and the origin which allows the detection of nonlinearity with
minimal additional points, as seen in Figure 3.2. These models allow exploration of all
interactions as well as all of the main parameters independently. Unfortunately, utilizing
factorial designs may still require significant computational resources as the number of de-
sign points still increases exponentially with each additional factor [34]. For instance, when
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investigating eight factors for a screening experiment we need 38 = 6561 design points, if
we run every design point with 10,000 replications we would need 65,610,000 total execu-
tions of the simulation. As our current model takes about one second per replication, that
would lead to nearly 759 days to complete the total set of experiments.

Alternatively, we can implement a fractional factorial design as seen in Table 3.1, which as-
sumes that higher order terms are negligible [29]. Based on the resolution of the fractional
factorial design, we risk confounding the main effects with those of higher-order terms. For
our model a resolution V fractional design would be adequate, causing the main effects to
include noise only from the fourth-order terms or higher, as well as the second order terms
from the third-order terms or higher. In doing so, we assume the significant interactions to
be of the second order or lower, allowing us to significantly reduce the number of design
points we would need to generate. Further explanation of fractional factorial designs can
be found in Law [29] or Sanchez [35]. We ultimately choose to implement a more efficient,
space-filling design, as seen in the following paragraph.

n X1 X2 X3 X4 X5 X6 X7 X8
1 80 80 20 1 0.2 0.05 45 45
2 100 80 20 1 2 0.05 45 90
3 80 100 20 1 2 0.05 45 90
4 100 100 20 1 0.2 0.05 45 45
5 80 80 40 1 2 0.05 45 45
...

...
...

...
...

...
...

...
...

63 80 100 40 3 2 0.3 90 90
64 100 100 40 3 0.2 0.3 90 45
65 90 90 30 2 1.1 0.175 67.5 67.5
...

...
...

...
...

...
...

...
...

79 90 90 30 2 1.1 0.175 45 67.5
80 90 90 30 2 1.1 0.175 67.5 67.5
81 90 90 30 2 1.1 0.175 67.5 45

Table 3.1: Resolution V fractional factorial design with star-points for 8 factors. This design
incorporates the high and low values of the factors we utilize in our model. A resolution V
fractional factorial design with star-points for eight factors contains 81 design points. We explain
these factors in greater detail in Section 3.3.1.1

1The complete design matrix in comma-separated value format (filename Resolution_V.csv) can be
downloaded from http://faculty.nps.edu/thchung under Software.
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Figure 3.2: Full Factorial Central Composite Design for Three Factors. Full factorial points are
in blue with the star, or axial points in magenta, after [35]

This type of screening experimental design is limiting as it only investigates the two ex-
treme levels for each factor; while this is enough to investigate linear models it would not
be able to clearly reveal nonlinear effects. In order to capture these potentially nonlinear ef-
fects, one can employ a space-filling design. For example, a NOLH design provides us with
a space-filling design with relatively few design points [36]. The NPS Simulation Experi-
ments and Efficient Designs (SEED) Center [37] provides a spreadsheet tool for developing
NOLH designs for up to 29 factors; this satisfies our need for a space-filling design for the
eight factors in our simulation model, as we explain in Section 3.3.1. A resulting design
using the NOLH template is partially annotated in Table 3.2.

Having developed our experimental design, we seek to identify the number of replications
necessary for each design point. We begin by performing 10,000 replications for multiple
design points from each of the three simulation models. We plot the variance against the
number of replications, as seen in in Figure 3.3, and analyze how the variance changes
as the number of replications increase. In all of the selected design points, the variance

2The complete design matrix in comma-separated value format (filename NOLH_Initial.csv) can be
downloaded from http://faculty.nps.edu/thchung under Software.
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n X1 X2 X3 X4 X5 X6 X7 X8
1 100 81.875 29 1.375 1.81 0.20625 75.9375 66.09375
2 98.125 100 23 1.75 1.2 0.096875 78.75 59.0625
3 97.5 88.75 38 1.3125 0.55 0.198438 77.34375 46.40625
4 91.25 97.5 40 1.8125 1.91 0.089063 81.5625 47.8125
5 98.75 80.625 29 1.4375 1.53 0.229688 63.28125 70.3125
...

...
...

...
...

...
...

...
...

29 84.375 85.625 27 1.125 0.88 0.057813 68.90625 71.71875
30 88.125 96.875 36 1.875 1.11 0.26875 46.40625 54.84375
31 83.125 88.125 33 1.25 1.77 0.159375 47.8125 57.65625
32 87.5 96.25 23 1.1875 1.44 0.3 60.46875 56.25
33 83.75 87.5 28 1 0.78 0.073438 64.6875 60.46875

Table 3.2: Nearly Orthogonal Latin Hypercube design for eight factors of interest in the swarm
search models investigated in this thesis. We explain these factors in further detail in Sec-
tion 3.3.1.2

fluctuates considerably in the first 2,000 replications but stabilizes by replication 6,000.
We identify this as an adequate number of replications to generate a consistent confidence
interval around the estimates of our mean [29].

3.3.1 Variables of Interest
Based on our assessment of the simulation, we identify eight key variables which seem
likely to influence the responses, namely the search performance. These variables, with
their valid ranges and units are defined in Table 3.3 and described further in this section.
We also designate the duration of one timestep, which contributes to how several of our
factors are implemented despite not changing from design point to design point.

Timestep Duration is the length of time that passes during each timestep. We set this to
one minute for every scenario, and while remaining constant, it contributes to how several
of the other factors are implemented. Foremost, detections occur once at the beginning
of every timestep; therefore, our sensors make one detection per minute. If the sensor we
implement performs multiple glimpses per minute, then we need to either incorporate that
into the detection module, or modify other factors. Similarly, as velocity is a function
of distance and time, we can shorten the duration of a timestep by either increasing the
dimensions of our search area, or by reducing the searchers’ and target’s velocities.
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(A)

(B)
Figure 3.3: This �gure shows how the variance and mean change as the number of replications
of two design points increases from 100 to 10,000 by intervals of 100. Variance stabilizes at
6,000 replications.

Height, Length are the dimensions of the search area. We varied the dimensions between
80 and 100 NM providing a search area between 6400 and 10,000 square nautical miles.
This size is a reasonable search area since it would encompass an operating area that would
take a target traveling eight knots at least ten hours to cross. As reference, we can fully
partition the East China Sea into 58 parts, each smaller than the minimum size of our
search area.

NumAgent is the number of agents that are active in the search. This parameter greatly
influences the effectiveness of the search, for example, with increasing numbers provid-
ing a wider sweep width when running abreast, or increasing the probability of detection
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Variable Name Range Units
X1 Height [80,100] nautical miles
X2 Length [80,100] nautical miles
X3 NumAgent [20,40] agents
X4 VelAgent [1,3] ×60 knots
X5 SpaAgent [.5,2] nautical miles
X6 VelTarget [.05,.3] ×60 knots
X7 TRTarget [45,90] degrees
X8 TRAgent [45,90] degrees

Table 3.3: Simulation variables considered in the presented statistical design of experiments.
Each of these factors are systematically varied over the de�ned ranges during several simulation
replications.

by having multiple detection opportunities per sweep, or some combination of these two
advantages.

VelAgent is the search agents speed of advance, notionally assumed to be aerial assets.
The low value of one represents transit at 60 kts, while the upper value of three is assumed
to represent 180 kts. These are reasonable speeds compared to modern UAVs, and allow
an adequate search of the environment. While a higher speed indicates that the area will be
searched faster, it can also lead to some areas being searched less thoroughly.

SpaAgent determines how spread out, i.e., the inter-agent spacing, the search agents con-
duct the search. In the case of Agents Abreast and Agents in Column, this spacing remains
constant, either laterally or behind the leader. Agent spacing greatly influences the effective
sweep width in some scenarios, determining how quickly the search area is covered in the
initial pass. Alternatively, if the spacing is too great, then large areas will not be covered as
there are gaps in the sweeps between adjacent sweeps.

VelTarget determines how fast the target is assumed to travel. Recall the assumption that
the target is unaware of the search efforts against it, such that we assume that the target
travels at a constant speed. Since the proposed study is highlighting the employment of
high speed agents (e.g., UAVs), against a much slower target (e.g., a submarine), we can
limit the target’s speed to be between 3 to 18 kts. This nominal range relates to speeds
commonly found by water bound targets, though this speed is significantly faster than what
is commonly found by drifting targets.
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TRTarget, TRAgent reflects the maximum turn rate of the target and searchers. The agents’
heading changes are constrained to simulate restrictions to an actual agents ability to change
direction. These variables represent the maximum change in degrees from their current
course. For example, a turn rate of zero would limit the agent to moving in a straight line,
while 180 allows completely random motion. With a lower level of 45 degrees we force
the target to maneuver while the upper level of 90 prevents the target from dwelling overly
long at any specific point.

3.3.2 Simulation Response Variables
In the previous sections we outline the input parameters and the experimental design for
the swarm search models of interest. In this section we discuss the simulation outputs,
which represent the measures of performance or response variables that we use for in-depth
analysis in the next chapter.

In running these scenarios we are able to obtain four main quantitative values, denoted
Y1, . . . ,Y4, which we used to measure the efficiency and efficacy of given swarm search
models as seen in Table 3.4. We expand on these variables throughout this section. The
first measure collected by the simulation framework includes the time to first detection,
which represents the earliest point in the run when a positive detection is made on the
target. We do not include false positives as a detection for our response variable. Note that
in order to capture and simulate the finite endurance of the search assets and search mission
duration, a simulation time limit is imposed, which leaves the possibility that the searchers
make no detections prior to the conclusion of the search mission. As such, in our analysis,
the conditional probability of detection for each of the design points is also computed and
recorded as we will discuss in Section 4.1.

As an additional feature, the proposed simulation framework also records the number of
agents that successfully detect the target throughout the search evolution. While in our
given scenarios, such data may not provide significant benefit as the individual simulation
run terminates after the first detection occurs; this additional information can be obtained
should the termination criterion be based on mission duration, regardless of the number
of detections, or in the case that multiple detections are required to perform a positive
identification of the target. The final statistic that our framework records is the number
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of detection possibilities that occurred. This ground truth information provides several
benefits in determining the quality of our sensors. For example, if we see a large number
of attempted detections in relation to the number of positive detections, we can determine
that the sensor performs poorly for that scenario. Each MOP highlighted above provides
insight into different aspects of the search processes. For illustrative purposes highlighted
in this thesis, we focus mainly on the time to first detection and probability of detection as
our primary metrics.

Variable Name
Y1 Timestep

Y2 Passes

Y3 Hits

Y4 Found

Table 3.4: Response variables collected in the presented framework. Each of these responses
contribute to at least one MOP.

Timestep is a positive integer variable that represents the timestep at which the first de-
tection of the target occurred. The average of this variable for a specific design point (i.e.,
over replications) provides the expected time to first detection for the given input factors.
The lower the value of this response variable, the more effective our search; this indicates
a more desirable swarm search configuration.

Passes is a positive integer variable that represents the number of possible detection of the
target. Passes increments once per timestep for each UAV that has a non-zero probability
of detection during that timestep. This measure provides information on the effectiveness
of the sensor, as well as the search process itself; a high number of passes could be the
result of a poor sensor or of a search pattern that covers the search area but leaves large
portions covered only by parts of the sensor that have poor probabilities of detection.

Hits is a positive integer variable that represents the number of actual positive detections
on the target. This provides information on the ability to maintain track on a target. In
practice, if only a single detection occurs it may be a false alarm, but if multiple detections
occur on the target over a relatively short time period and distance, then it is more likely
that we actually found the target. Furthermore, by coordinating hits to times and locations,
this response can measure the effectiveness of the search pattern to maintain contact and
track the target.
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Found is a binary variable, that is, zero if the target was not found prior to the time limit of
the search and one if the searchers successfully found the target. The average value of this
variable for a particular design point provides the probability of detection for the given de-
sign point’s factor values. Higher probability values correspond to favorable configurations
of swarm searchers.

Having discussed the design of our experiment and the development of our model, we
continue with the conduction of simulations and analysis in Chapter 4.
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CHAPTER 4:

Analysis and Results

This chapter describes the methods of analysis used to identify quantitative insights lever-
aging the proposed assessment framework including the constructed search models of in-
terest, designed experiments, and resulting response data. We perform analysis on the data
from the three baseline simulated swarm search models, Agents Abreast, Agents in Col-
umn, and Random Walk, followed by attempts to reduce the variability in the generated
regression models. These studies help to validate our framework as a tool capable of sim-
ulating swarm searches and generating analyzable data, as well as highlighting potentially
relevant design decisions.

4.1 Analysis Methodology
We concentrate the analysis on one of the measures provided by the simulation, namely
Timestep, which represents the first timestep the target is found. As such, Timestep is a
discrete random variable determined for each design point and represented by the average
value over 6000 replications. We seek to identify which factors pose the greatest influences
on the (expected) time to first detection. To condition the data that allow for actual detec-
tion of the target, we exclude those replications where the search agents did not find the
target by the allotted mission time, thereby determining the conditional expected time to
first detection for each design point. Using this conditional expectation, we perform a stan-
dard least squares linear regression to determine the influential factors, thus analyzing main
effects, two-way interactions, and quadratic effects (if applicable). Once such influential
factors are identified in these screening exercises, we can further investigate sensitivities to
these significant factors by fixing the remaining sources of variability at their center values
and repeating the simulation experiments. With our new data, we once again perform a
standard least square regression to develop our refined regression model. We then deter-
mine the parameters which minimize our expected time to detection, either analytically (if
possible) or computationally. Finally, based on these search performance prediction mod-
els, additional swarm search factor values are used to test the validity of these models and
their predictive value.
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4.1.1 Regression Analysis

The purpose of our analysis is to determine how one variable is affected by other variables,
which is referred to as regression analysis in statistics [38]. Since we utilize a stochastic
simulation model, we cannot determine exact deterministic values of measures of perfor-
mance; by analyzing the relationships between the factors that we assume or identify to
be important, we can predict our measure of performance from the aggregated simulation
data [39]. One of the most basic and intuitive methods is to develop a linear regression
model that attempts to minimize the distance from each data point to the fit. As seen in
Montgomery [39], the simplest linear prediction model is of the form seen in Equation 4.1
and involves only a single factor, where Y is our response variable, and β0 is the y-intercept,
and β1 is the regression coefficient representing the change in the mean of the response
variable due to a change in factor x.

Y = β0 +β1x+ ε (4.1)

The random error term, ε , is what separates this regression model from a deterministic
model, allowing our data points to fall above or below the regression line represented by
Equation 4.1. This simple linear model can be expanded to include other independent fac-
tors, their interactions, as well as their polynomial terms. We see the resulting general
additive form in Equation 4.2, where xi, referred to as the predictor or regressor variable,
represents main effects, the interactions between factors, and polynomial terms in the re-
gression model. In addition, βi represents the regression coefficient of the corresponding
regressor.

Y = β0 +β1x1 +β2x2 + ...+βkxk + ε (4.2)

As our goal is to find a prediction model that most accurately predicts our measure of
performance for any set of factor values, the objective is to identify the coefficients, βi,
in Equation 4.2 which provide us with an acceptable regression fit. In order to do this,
we utilize least squares regression. The principle behind least squares regression revolves
around choosing values for βi that minimize the vertical distance each data point lies away
from the regression plane [39]. This is accomplished by choosing values for our estimators
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of βi, commonly represented as β̂i, that minimize the square of the vertical distance of each
point from the regression line, as seen in Equation 4.3.

f (β0,β1, ...,βk) =
n

∑
i=1

[yi − (β0 +β1xi +β2x2
i + ...+βkxk

i )]
2 (4.3)

Once we develop our least squares regression, we can determine the adequacy of statistical
model utilizing our coefficient of determination (R2) and adjusted R2. While both represent
the goodness of fit of our statistical model, R2 always increases when we add a regressor
to our statistical model, regardless of the contribution of the variable, whereas adjusted
R2 only increases if we add a regressor which improves our statistical model. Utilizing
adjusted R2 helps prevent us from overfitting our model by penalizing us for adding terms
that are unhelpful [39]. We therefore use adjusted R2 for our analysis, and refer to it simply
as R2 . This assists us to provide a simple statistical model that provides insight into the
scenario of interest.

4.1.2 JMP in Analysis
For our statistical analysis, we primarily utilized JMP versions 10 and 11. This statistical
software provides a considerable number of tools, including a wide array for performing
the regression analysis. In this section, we discuss how we utilized JMP as a tool to perform
our linear regression analysis.

The first step in our analysis in JMP is importing and filtering the data. After importing
the comma-separated value data file aggregating the response data from the simulation, we
created a histogram to help us isolate the replications where the searchers found the target
from those where it went undetected. To do this, we analyzed the distribution of our Found
response as seen in Figure 4.1 and excluded those replications where the searchers did not
find the target. Furthermore, we generated the Cumulative Detection Probability (CDP)
using Timestep response data as seen in Figure 4.2. Examination of the raw data, such
as that seen in Figure 4.3, reveals that additional pre-processing of the response data is
necessary before we are able to utilize the aforementioned regression techniques.
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Figure 4.1: Breakdown for the Agents Abreast search pattern for those replications where the
searchers found the target, and those where the searchers failed to �nd the target. For this
simulation model the target was found in 98 percent of runs over all design points.

Figure 4.2: This �gure shows the breakdown between which timestep the searchers found the
target (left), as well as the cumulative detection probability (right).

Figure 4.3: Timestep the searchers found the target plotted against the number of agents used
for that search. Due to the number of replications and the variability, additional processing is
required before these raw data are useable for regression analysis.
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Our next step was to compile the raw data (i.e., the responses from the simulation replica-
tions) into a useable form. To do this, we consolidated the design points to a single entry
each by averaging Timestep to find the expected time to first detection for each design
point, and creating the MOP, that is, the Probability of Detection (PD), as provided in the
summary table shown in Table 4.1.

DP X1 X2 X3 X4 X5 X6 X7 X8 Ŷ1 Ŷ2
1 100 81.875 29 1.375 1.81 0.20625 75.938 66.094 536.7 0.982
2 98.125 100 23 1.75 1.2 0.096875 78.75 59.063 601.2 0.992
3 97.5 88.75 38 1.3125 0.55 0.19844 77.344 46.406 436.1 0.99
...

...
...

...
...

...
...

...
...

...
...

Table 4.1: JMP's summary table allowed us to summarize our data over each design point. 3

At this point we begin to leverage JMP’s powerful statistical modeling toolbox. From
our summary table, we utilized JMP’s regression modeling features to perform a stepwise
regression to isolate the important factors and interactions that most contribute to the vari-
ability in predicting the expected time to first detection. This approach allowed careful
iterative selection from all main effects, two-way interactions, and quadratic effects, to a
significantly smaller subset as seen in Figure 4.4. JMP allows us to weight our regression
coefficients by the amount each design point contributes to the regression model, which is
important as we are conditioning on the searchers finding the target. We therefore weight
our regression parameters by the PD, which is a direct correlation to the number of replica-
tions where we successfully detected the target within our time limit.

Once we have narrowed our regressors to those significantly impacting the regression
model, we utilize JMP to generate a standard least squares regression and begin to screen
effects. JMP assists with our effects screening by generating a list of our parameters, sorted
by their significance in the regression model as seen in Figure 4.5. We then begin elim-
inating those regressors with the least significant effects, then iteratively performing the
regression until we are satisfied with our regression model (as measured by the adjusted R2

fit values).

3The complete results matrix in JMP data table format (filename AA_Final_Summary_and_Model.jmp)
can be downloaded from http://faculty.nps.edu/thchung under Software.
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(A)

(B)
Figure 4.4: Stepwise regression process in JMP. Initially, only factor included in model is the y
intercept (A). As stepwise regression progresses, factors are added and removed to the regression
model to �nd the best �t. The �nal regression model (B) with R2 at the top, and the factors
that were considered to impact the regression model checked below as well as their predicted
regression coe�cients.

Furthermore, we can explore the effect each factor has on our resulting prediction model
utilizing JMP’s prediction profiler, as seen in Figure 4.6. This tool also allows us to see how
the prediction of the response variable changes as we adjust the values of the regressors.
The prediction profiler also provides us with 95% prediction intervals for the response
variable of interest. This also provides a visual representation of how the response variable
will change as we adjust the value of a regressor across its possible values. The magnitude
of the slope of the regressors indicates the influence that regressor has on the predicted
response variable, provided the remaining variables remain constant. For example, if we
set the Height and Length of the search area to 90 NM, utilize 40 agents in the search,

46



(A)

(B)
Figure 4.5: E�ect Screening in JMP. Initial (A) and �nal (B) regression models developed from
stepwise regression in JMP. Parameters are sorted by their contributions to the regression model.
The blue line denotes 0.05 signi�cance level, orange values are those parameters with signi�cance
less than .01, red denotes parameters with signi�cance between .01 and .05, and black for those
above .05.

spaced 3 NM apart, we expect to find the target at 450 timesteps, or 7.5 hours. Furthermore,
we can see if we hold all other regressors constant, and reduced the number of agents to
twenty, we would expect to find the target in about 750 timesteps, or 12.5 hours.

4.2 Simulation Model Analysis
Having discussed our analysis techniques, we continue with the analysis we perform on
our three cases, Agents Abreast, Agents in Column, and Random Walk. In this section,
we explain the analysis and the generating process for our statistical models. We conclude
with a discussion on how we arrive at our prediction models from our simulation model.
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Figure 4.6: JMP's Prediction Pro�ler allows us to experiment with how di�erent values for our
regressors impacts the response variable.

4.2.1 Agents Abreast
Recall that the first step in our analytic process is to aggregate the resulting data in a format
conducive to analysis. To do this, our framework generates two output files per simulation.
The first file is a .mat file, which is a MATLAB structure file that includes the specific
variable values for each design point, the response variables, and the settings of our random
number generator, including the seed. This saved MATLAB file serves as a backup to
retrieve the simulation results for one or more replications without repeating execution
of the simulation models. The second file that the framework generates, as described in
previous sections, is a comma-separated value, which contains all relevant response and
design point data.

As discussed in Section 4.1, we perform a standard least squares analysis to determine the
influential factors in the regression model. When the initial results returned, the expected
time to first detection seemed biased to the right. Upon further investigation, we realize
that the program set the time of first detection as the termination of the replication if the
searchers did not find the target, causing significant probability mass to accumulate on the
final timestep. To account for this, we exclude replications where the searchers do not find
the target and condition our results on finding the target. For example, for design point two
(see Table 4.2), the expected time to first detection is 601 timesteps, given that the target is
detected on that run, and the probability of detection is 0.992 as seen in Figure 4.7.

X1 X2 X3 X4 X5 X6 X7 X8
Design Point 2 98.125 100 23 1.75 1.2 0.096875 78.75 59.0625

Table 4.2: Design Point Two
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Figure 4.7: Expected time to �rst detection and probability of detection for Agents Abreast
search model by design point. The highlighted data point corresponds with design point two.
Blue represents the time to �rst detection. Red represents the probability of detection.

To develop our statistical model from this processed data, we create a summary table in
JMP. This allows us to consolidate the information from each design point, determining the
expected time to first detection, variance of the time to first detection, and the probability
of detection for each design point. We perform a quick visual inspection of our data, and
notice no significant outliers in the expected time to first detection, but two outliers for our
PD as seen in Figure 4.8. These outliers correspond to design points possessing a high target
velocity, and a low target turn rate. The outliers do not significantly impact our results as
we condition or expected time to first detection on finding the target and all of our design
points achieve a greater than 90% detection rate. Furthermore, we weight the impact each
design point has on our regression by the probability of detection for the design point.
We also inspect the multivariate graph of expected time to first detection and PD, noticing
some distinct correlation between several factors, such as the number of searchers and the
expected time of first detection, as seen in Figure 4.9. Performing a visual inspection of our
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initial data provides us with an idea of what we should expect from our regression analysis,
helps us find possible problems with our simulation model, and potential problems we may
encounter when creating our regression model.

Having performed our visual analysis of our results, we utilize JMP’s stepwise regression
feature to begin the statistical analysis. Weighting the impact the data has on the regression
model by PD, we generate initial regression models of the expected time to first detection.
Recognizing that JMP’s stepwise regression tends to overfit the statistical model, we can
manually determine which additional factors to remove. The initial stepwise regression
identifies a statistical model that provides an excellent fit, with an adjusted R2 of 0.96, but
includes six of the main factors, and eleven interaction terms. Furthermore, a significant
number of those regressors either have a minor impact on the regression model or there is a
reasonable probability that the true value of the regression coefficient is zero as seen previ-
ously in Figure 4.5. We remove terms from this initial regression model in order to develop
a more manageable product (i.e., fewer terms) while monitoring the goodness of fit. For the
Agents Abreast regression model, we only reduce the number of significant factors down
to the Height and Length of the search area, the spacing of the searchers (SpaAgent),
the velocity of the searchers (VelAgent), and the number of searchers (NumAgent). When
attempting to remove additional factors in our regression model such as Height or Length,
we notice a significant drop in the R2 from 0.94 to 0.82. This leads us to believe that while
these regressors only contribute about eight percent each, they are necessary for the overall
accuracy of the regression model.

We now try to minimize the effect the noise has on the resulting statistical model. To
do this, we modify the experimental design to isolate the factors that we determine to be
important. By holding the noise factors constant (at their center values) and utilizing a
refined NOLH design for the remaining variables, we generate an additional set of design
points to run and collect data. Once the results are compiled, we import them into JMP,
perform the linear regression as before, and determine more accurate predictors for the
model parameters. This leads us to the estimated or fitted response variable, Ŷ1, from the
regression model as seen in Equation 4.4. Recall from Section 3.3.1 that X1, X2, X3, X5, X6,

and X7 correspond to the Height and Length of the search area, the number of searchers,
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(A)

(B)
Figure 4.8: Distribution of Agents Abreast expected time to �rst detection (A) and PD (B).
There are two outliers for the probability of detection.

the spacing between searchers, the velocity of the target, and the turn rate of the target,
respectively.

Ŷ1 = 217+3.8X1 +4.7X2 −16X3 +43X5 +525X6 −2.7X7 +1.3(X3 −30)2 (4.4)

Notice that the coefficients for X3 and X7 are negative, and intuitively this makes sense,
for as the number of searchers increases, we effectively have a single combined sensor
with a nominally wider detection curve allowing a quicker coverage of the search area
which thus decreases the average time to initial detection. Conversely, the coefficient for
X5 is negative indicating that as searchers spread farther apart, the expected time to first
detection increases. This effect is simple to visualize for increased spacing as the centers
of the detection curves shift further apart as seen in Figure 4.10, but a similar effect occurs
as velocity increases because detections occur only at the beginning of each timestep, and
not at every point between the searchers’ location at the start of one timestep and the next.
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Figure 4.9: Multivariate Scatterplots of Agents Abreast simulation model, showing expected time
to �rst detection (top) and probability of detection (bottom). Density ellipses provide a visual
representation of correlation between factors.

This issue is an artifact of the discretization of time and space in the simulation model, and
though appropriate for the class of search models investigated herein, may be addressed in
future refinements of the proposed framework. Similarly, as agents move closer together,
their sweeps overlap, providing increased coverage in that area as seen in Figure 4.11. This
turns out to not be an additive increase, as the probability of at least one detection is the
complement to the probability of neither searcher detecting the target.

The positive coefficient on the quadratic terms for number of agents indicate that there
is a diminishing return to increasing the number of agents beyond a certain point and in
fact increasing them too far can have a negative impact on performance. This agrees with
intuition to an extent, for as we increase the number of searchers we expect to hit a point
of diminishing returns; based on the search pattern, adding additional agents increases the
width of the detection curve thus providing additional coverage of the search area but does
not reduce the effectiveness of the search anywhere. As such, we should never reach a point
where adding additional searchers increases the time to first detection. Due to attempting to
fit the statistical model with only main and quadratic effects, and two-way interactions, we
cannot fully capture how diminishing returns effects our model. Utilizing 1

X3
, the reciprocal

of the number of agents, could provide a better representation, but as our statistical model is
adequate over the range we are investigating, we leave this to future work. Referring back
to Figure 4.9, we see that our prediction model is consistent with our initial hypotheses on
the dependence of swarm search performance on the number of searchers.
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Figure 4.10: Searcher spacing and searcher
velocity create gaps in sensor coverage
when increased beyond a threshold.

Figure 4.11: Searcher spacing and searcher
velocity provide overlap if spaced close
enough together, e�ectively extending into
a single detection curve.

Having generated a statistical model, we attempt to validate our work by generating a test
design point, performing the necessary replications at the design point, then evaluating how
accurately our statistical model predicts our response variable at the design point. We de-
cide to try to optimize the factors to generate the minimal expected time to first detection.
To do this, we minimize Equation 4.4, constrained by the valid ranges of values for the fac-
tors (refer to Table 3.3). Since the majority of our regressors are main effects only, we are
able to simply maximize or minimize them based off their coefficients, such as minimizing
the Height and Length of the search area due to their positive coefficient, and maximizing
the turn rate of the target due to its negative coefficient. Since the number of agents con-
sists of both the main and quadratic effect, we perform additional calculations to identify
the point where the function is optimized. We take the partial derivative of the function with
respect to X3, the number of agents, and set this to zero as seen in Equation 4.5. Solving
for the number of agents we arrive 36.15 agents, which we round to 36 as we are unable to
have partial agents. The design point we utilize is summarized in Table 4.3, shown towards
the end of this section.
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∂

∂X3
Ŷ1 =

∂

∂X3

(
217+3.8X1+4.7X2−16X3+43X5+525X6−2.7X7+1.3(X3−30)2) (4.5)

0 =−16+2.6(X3 −30)

X3 = 36.15 ∼ 36 search agents

4.2.2 Agents in Column
For our searchers moving in a column scenario we performed our analysis in much the
same manner. Upon conducting repeated simulation, we export the resulting response data
to a comma-separated value data file to import into JMP. We filter those data to exclude
the replications where the searchers did not find the target within the timeframe before
performing the initial regression analysis. Upon visual inspection of the scatterplot matrix
in Figure 4.12, we expect the velocity and spacing of the searchers to be the main factors.
Similar to the previous Agents Abreast regression model analysis, we find JMP appeared to
overfit the stepwise regression model with an R2 of 0.98, and thus we manually reduce the
number of parameters in the regression model to produce a manageable size while main-
taining an adequate fit, as seen in Figure 4.13, ultimately arriving at a R2 of 0.92. Having
determined the key contributors to the variability, we perform the simulations while holding
the noise factors constant at their center values, analyzing the remaining significant factors.
As done in Section 4.2.1, this analysis leads us to Equation 4.6 as the statistical prediction
model for the expected time to first detection for the Agents in Column simulation model,
where we recall that X4 and X5 represent searcher velocity and searcher spacing, respec-
tively. The linear and quadratic nature of these factors intuitively makes sense for the same
reasons as discussed in Section 4.2.1.

Ŷ1 = 5504−858X4 −1490X5 +387(X4 −2.0)2 +1149(X5 −1.1)2 (4.6)

Notice that the number of searchers does not have a significant effect on the prediction
model for this swarm search configuration of Agents in Column. We suspect this is pri-
marily due to already reaching the diminishing return point of number of searchers at our
minimum number of twenty search agents. This is most likely due to the relatively small
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Figure 4.12: Multivariate Scatterplots of Agents in Column simulation model expected time to
�rst detection (top) and probability of detection (bottom). Density ellipses provide a visual
representation of correlation between factors.

(a)

(b)
Figure 4.13: Contribution of regressors in our linear regression model. The stepwise regression
over�ts the model (a), by removing minimally contributing factors we creating a simpler model
(b).

change in target position during each timestep, giving each searcher nearly the same prob-
ability of detecting the target. This effect makes intuitive sense as at a 0.1 probability of
detection, with twenty agents having possible detections collectively increases this proba-
bility to approximately 0.88 probability of detection on each pass, whereby increasing to
thirty agents only increases this to 0.96, and increasing the number of searchers to forty
agents leads to 0.99 probability of detection. We maintain the range of searchers between
twenty and forty agents to provide parity between the parameters of our search models.
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We expect that by splitting the search area into several sections, and assigning a subset of
available searchers to each subsection, we can greatly improve the search, but leave this to
future work.

Once again, we attempt to validate our work by generating a test design point, then evaluat-
ing how accurately the computed statistical model predicts the response for the given design
point. We determine the design point to minimize the time to first detection in the same
manner as we did for the Agents Abreast prediction model. This time, since the regression
model possesses two quadratic terms, we need to take the partial derivative with respect
to each regressor, once to determine the optimized velocity of the agents, and again to de-
termine the optimized inter-agent spacing. The predicted optimal velocity of the searchers
falls outside of the upper range for that variable at 3.1, so we utilize a searcher velocity of
3 kts. Conversely, the optimal spacing of the agents falls well within the range of 0.5 to 2
NM at 1.75 NM. The design point we utilized is seen in Table 4.3.

In Figure 4.14 we show how the negative parameter for the main effect and the positive
parameter for the quadratic effect of the X4 term (that is, the searcher velocity) suffers di-
minishing returns as searcher velocity increases. Furthermore, the rate of decrease remains
constant, regardless of the searcher spacing utilized for the search, as there are no interac-
tions in our regression model. The effect of increasing the searcher spacing also diminishes
as they spread further apart.

4.2.3 Random Walk
We generate the Random Walk statistical model utilizing the same process as performed
for both Agents Abreast (Section 4.2.1) and Agents in Column (Section 4.2.2).

From initial visual inspection of the scatterplot seen in Figure 4.15, we expect the number
of searchers, the velocity of the searchers, and the velocity of the target to be the primary
contributors to the variability in our regression model. The regression analysis highlights
the same problem of overfitting experienced previously, but we reduce the complexity to
an acceptable level and isolate the noise elements as done before. Similar to the Agents
Abreast regression model, we find that most of the factors are significant, and are only able
to isolate one factor, the spacing of the searchers, as insignificant to the regression model as
seen in Figure 4.16. Following the isolation of the noise, we perform the simulation with a
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Figure 4.14: Predicted impact that searcher spacing has on the expected time to �rst detection
for the Agents in Column regression model.

refined experimental design specifically to perform sensitivity analysis and adjust the pre-
diction model accordingly. We arrive at Equation 4.7 as the computed statistical prediction
model for the Random Walk simulation model, where X2, X3, X4, X6, and X8 represent the
length of the search area, the number of searchers, the velocity of the searchers, the velocity
of the target, and the turn rate of the searcher respectively.

Ŷ1 = 529+5.3X2 −17X3 −118X4 +879X6 +2.4X8 (4.7)

In Figure 4.17 we show how the negative parameter for the main effect of the X4 term (that
is, the searcher velocity) remains constant as searcher velocity increases. Furthermore, the
rate of decrease remains constant, regardless of the number of agents utilized for the search,
as there are no interactions in our regression model. The effect of increasing the number
of searchers also remains constant as more searchers are utilized. We believe this indicates
that we have not reached the point of diminishing returns.
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Figure 4.15: Multivariate Scatterplots of Random Walk model expected time to �rst detection
(top) and probability of detection (bottom). Density ellipses provide a visual representation of
correlation between factors.

4.2.4 Measures of Performance
Having developed a statistical model for each of the three swarm search patterns and hav-
ing determined associated prediction models, we are able to extract the measures of per-
formance of interest from the validation results for the optimized factor values for each
search pattern. Utilizing JMP to analyze the response data sets, we calculate the expected
time to first detection for the predicted optimal design point of each search pattern. For
Agents Abreast and Agents in Column, we are within 95 percent prediction intervals, and
the Random Walk results fall within twenty timesteps of the upper limit of the prediction
interval. While still outside of a 95 percent prediction interval, these results are within the
99.5 percent prediction interval. The factors, the predictions, and the resulting response
data of the three prediction design points are seen in Table 4.3.

Search Pattern X1 X2 X3 X4 X5 X6 X7 X8 Ŷ1 PI Y1
Agents Abreast 80 80 36 2 0.5 0.05 90.0 67.5 185 ± 82 257
Agents in Column 90 90 40 3 1.75 0.175 67.5 67.5 1102 ± 392 1108
Random Walk 90 80 40 3 1.25 0.05 67.5 45 87 ± 145 247

Table 4.3: Validation study using statistical prediction models with optimized design points for
the three swarm search patterns.
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(a)

(b)
Figure 4.16: Contribution of regressors in the resulting linear regression model. The stepwise
regression over�ts the regression model (a), by removing minimally contributing factors we create
a simpler regression model (b).

59



Figure 4.17: Predicted impact that the number of agents has on the expected time to �rst
detection for the Random Walk regression model.
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CHAPTER 5:

Conclusions and Recommendations

This section provides an assessment of the presented framework based on the model for-
mulations and statistical analysis completed in the previous chapters. We discuss areas that
the models could be improved or changed. Finally, the chapter concludes with propos-
als for operational applications, follow-on studies, and future applications of utilizing this
simulation framework for assessing future swarm search models.

5.1 Conclusions
We created a framework to model, implement, and assess swarm search models in MAT-
LAB in order to perform rigorous statistical analysis and generate potential operational
and technical insights. Such a framework is likely to be useful in exploring a wide va-
riety of relevant aspects of swarm search, such as different search strategies and patterns
as well as different target distributions and behaviors. Furthermore, the methodology we
develop and demonstrate in this thesis can easily be repeated for, e.g., different detector
model or search agent characteristics, to specifically analyze how the different sensor or
searcher affects the model. As such, the simulation and assessment framework we develop
in this thesis provides a useful tool in analyzing search strategies, searcher characteristics,
and sensor characteristics that may help inform future technology and operational design
and/or employment of swarm search capabilities.

One of the issues encountered during initial attempts to generate a statistical model was
overfitting. We attempted to analyze up to three-way interactions, and while the statisti-
cal model accurately fit the data, it included every main effect and nearly every two- and
three-way interaction. As such, the resulting statistical model indicated that everything was
statistically important and did not provide useful analysis of what factors contribute to the
expected time to initial detection. Therefore, we limit the studied statistical models to two-
way interactions and quadratic effects, allowing us to provide a more useful analysis of the
decision variables. We compare the adequacy of both statistical models, and suffer a minor
reduction to R2 of less than 0.001. We conclude that the higher order interactions do not
contribute significantly to the statistical model and thus remove them.
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5.1.1 Deterministic Search Patterns

The Agents Abreast statistical model is shown to be effective in predicting the expected
time to first detection for the Agents Abreast simulation model. For the Agents Abreast
statistical model, the number of searchers, is identified to be the dominant factor, which
is consistent with our expectation. For the Agents Abreast pattern, we effectively utilize a
single searcher with a significantly expanded detection curve. The more agents conduct-
ing the search, the greater the effect on the detection curve, and thus the greater the rate
of coverage during the search, which corresponds to the negative coefficient for the num-
ber of searchers in the prediction equation (refer to Equation 4.4). The larger effective
sweep width allows the searchers to cover the search area more quickly than the Agents in
Column and Random Walk search patterns, but with a lower chance of detecting the tar-
get. Nonetheless, the Agents Abreast pattern completes and repeats its coverage pattern of
the entire search area enough times to reach the point of diminishing returns gained from
multiple passes faster than Agents in Column model.

The Agents in Column statistical model also is shown to perform well at predicting the ex-
pected time to first detection of its simulation model. For the statistical model, the searcher
spacing, and velocity main and quadratic effects are seen to be important. While not im-
mediately apparent, we find that these effects match our expectations. As searcher spacing
and velocity increase, the formation covers the search area faster, reducing the expected
time to first detection which corresponds to the negative coefficient for the main effects
(refer to Equation 4.6). Conversely, the quadratic terms are positive, indicating that the
benefit gained from increasing speed and spacing diminishes, and eventually will start to
hurt the search pattern’s performance. While not immediately apparent, we believe this
is from the gaps in coverage caused by a poorly organized deterministic search which we
discuss in the following paragraph. While surprised that the number of searchers does not
impact the performance of the search model, we determine this is due to having surpassed
the point of diminishing returns by twenty agents. For similar reasons as those discussed
in Section 4.2.1, utilizing more agents for the search can only improve our results, but the
benefit gained by each additional agent declines significantly as we already get over twenty
looks at the target during each pass. We believe our statistical model to be an accurate
representation of our simulation model for the Agents in Column search pattern.
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Due to the nature of the deterministic models, we potentially have areas of significantly
better coverage and areas of relatively little coverage. Spacing between detection locations
cause these disparities in coverage. This can be seen in Figure 5.1 where spacing between
agents can leave gaps in sweeps and discretization of time can leave gaps between glimpses.
Furthermore, the presented framework is not explicitly designed to optimize the searchers’
search pattern; therefore, a limitation of the current implementation is that some of the
agents will search outside of the search area at the end of each sweep if the length of the
search area is not an exact multiple of the number of searchers and the spacing between
them.

5.1.2 Random Walk Search Pattern
Our Random Walk statistical model appears to be less effective in predicting the expected
time to first detection compared to the deterministic search models, but still is demon-
strated to be a useful model. The number of searchers, the searchers’ velocity, and the
target’s velocity are seen to be the dominant factors in the statistical prediction model,
which is consistent with the intuition for what factors are significant in overall search per-
formance as measured by the time to first detection. We expect additional searchers to
benefit the search performance, since increasing the number of searchers should increase
the rate of coverage during the search, which leads to the searchers finding the target faster.
This relationship corresponds to the negative coefficient for the number of searchers in the
prediction equation (refer to Equation 4.7). Furthermore, an increased searcher velocity
allows faster coverage of the search area. Due to the random movement of the Random
Walk search pattern, searchers do not follow a predetermined route, preventing them from
searching the exact same location and providing a more consistent coverage of the search
area, unlike in the Agents Abreast and Agents in Column search patterns. Additionally,
every agent will turn around when it gets to the edge of the search area concentrating their
efforts inside of the search area.

The velocity of the target plays a large role as well, but the nature of its impact on the model
is harder to ascertain. From fundamentals of search theory, one might expect that the move-
ment of the target to effectively enhance the speed of the searchers during random search,
contributing to a faster time to first detection referred to as the dynamic enhancement ef-
fect of target motion [6]. However, as the coefficient in the prediction model governing
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Figure 5.1: Gaps in coverage caused by excessive spacing and velocity in deterministic searches.
This is caused by detections occurring once per timestep and the di�erence in location of the
searcher at the beginning of each timestep. Red indicates a higher chance for detection while
blue indicates a lower chance for detection or gaps.

the impact of target velocity is positive, the generated model predicts that, in practice, the
opposite effect is exhibited. We believe that the restriction on the turning rate of the target
causes this effect. Since the target’s motion is not completely random, as its change of
direction is limited to a certain bearing off its current heading, its movement is biased to-
wards the direction it is currently facing, inducing it to move towards one of the boundaries
of the search area. This leads us to conclude that the faster the target moves, the faster it
will reach the edge of the search area, reducing the time inside the search area where it can
be detected. Considering that if the target is restricted to the search area, the target’s veloc-
ity would solely contribute to the effective velocity of the searcher rather than influence its
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ability to leave the search area as well. The exact nature of this relationship merits further
investigation in future work.

Of the three statistical models examined in this thesis, the Random Walk model performed
the worst in predicting expected times to first detection for the optimal case.

5.1.3 Model Comparison
Of the three investigated search models, the Agents Abreast and Random Walk methods
seemed to gain the greatest advantage from utilizing a swarm. While the Agents Abreast
and Random Walk search patterns have comparable probabilities of detecting the target and
expected time to first detection, their search performance dominates the Agents in Column
model in both areas. We believe that there are several reasons for these results. When
assessing the effectiveness of the Agents in Column search pattern, we notice that the rate
of coverage does not increase with the number of agents; rather, the impact is to increase
the probability of detection due to the multiple detection attempts of the target on each
pass. As such, the searchers will most likely find the target after a single pass, and thus,
the expected time to first detection should be a little over one half of the time it takes to
complete one coverage sweep of the search area (for uniform prior probability of the initial
target location), which we see reflected in the generated results. Furthermore, the target is
also moving, making it possible for it to evade a pass by the column of searchers. These
considerations combine to make the performance of the Agents in Column search pattern
bimodal, either passing close enough to the target to detect it on the first pass, or completely
missing the target for the entire replication.

Conversely, the Agents Abreast and Random Walk search patterns distribute their search
efforts over a much wider area. This means that the probability of the searchers finding the
target on the first pass may be smaller, but they cover the search area significantly faster. As
we utilize homogeneous searchers for both the Agents Abreast and Random Walk search
patterns, the time to effectively complete a sweep of the search area is inversely propor-
tional to the number of searchers as seen in Equations 5.1 and 5.2, whereas the time for
the Agents in Column pattern to complete a sweep of the search area remains the same as
that for a single agent. This allows the Agents Abreast and Random Walk search patterns
to cover nearly the entire search area enough times to reach the point of diminishing re-
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turns significantly faster than the Agents in Column search pattern. We consider this to
be the primary reason for the significantly slower time to first detection in the Agents in
Column search pattern. It is worth noting that changes to the simulation implementation
of all three search patterns could greatly enhance the fidelity of the simulation and poten-
tially reveal improved search performance. For example, we could partition the search area
and break the column of searchers into multiple columns, each column performing a lawn-
mower search over the partition. In this manner we could significantly reduce the effect of
diminishing returns we see in the current simulation model implementation.

FAA(t) =
M

∑
i=1

γit

FAA(t) = Mγit

=⇒ t∗ =
FAA(t)

Mγi
(5.1)

FRW(t) = 1− e−∑
M
i=1 γit = 1− e−Mγit

e−Mγit = 1−FRW(t)

−Mγit = ln(1−FRW(t))

=⇒ t∗ =
ln(1−FRW(t))

−Mγi
(5.2)

Another insight that merits further analysis is to quantify the upper decile of the timesteps
before which 90 percent of the simulation trials have detected the target. For the Agents
Abreast and Random Walk models, the upper decile occurs before 1500 timesteps for 75
percent of all design points, and 2200 timesteps represents the upper decile for all three
swarm search patterns studied in this thesis, as seen in Figure 5.2. This preliminary anal-
ysis potentially provides additional insight, for example, that the search mission duration
(i.e., simulation time) can be shortened substantially and can still lead to acceptable search
performance. The slower effective search performance of the Agents in Column pattern is
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also seen in the upper decile, being nearly five times longer than either of the other two
models, as seen in Figure 5.2. Such further analysis may additionally yield operationally
relevant insights of use to future employment of such swarm search capabilities.

5.2 Operational Applications
This framework provides the flexibility and robustness to apply to a wide range of oper-
ational areas. We include in this section some illustrative mission areas in the maritime
environment that could leverage this framework to explore implementing swarm search
systems for enhanced search effectiveness. Further investigations, perhaps using specific
data associated with the mission area of interest, may identify further utility of such swarm
search approaches.

5.2.1 Search and Rescue
The United States Coast Guard (USCG) responds to tens of thousands of distress calls a
year, saving thousands of lives. Nearly twenty percent of those in distress are still lost [40].
The capabilities of unmanned systems can greatly increase the number of searchers the
USCG may be able to employ in their search and rescue missions. As such, it is important
for the USCG to test the effectiveness of their search strategies prior to implementing them
in operational contexts where lives are at stake. The framework developed and proposed
in this thesis aims to provide the flexibility necessary to explore a wider variety of search
strategies potentially relevant to the USCG.

The major components for the USCG search model would likely include heterogeneous
search platforms, sensor models including visual detection models, target characteristics
and movement including drift conditions, and additional search agent characteristics. The
need for heterogeneous search agents arises from the variety of search and rescue units
(SRUs) that the USCG currently utilizes for their searches, such as National Security Cut-
ters, rotary- and fixed-wing manned aircraft, and imminently UXS as well. Furthermore,
the need may arise for multiple target types in the same model, as there may be personnel
in the water, as well as vessels in distress. Since the USCG would be utilizing a variety of
sensors, including the human eye in addition to, e.g., unmanned target recognition, different
sensor characteristics would also need to be used. Ocean currents and weather conditions
would impact both the target’s movement, and future candidate sensor capabilities could
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(a)

(b)

(c)
Figure 5.2: Distribution of Upper Decile for the expected time to �rst detection. Agents Abreast
(a) and Random Walk (b) perform comparably; however, Agents in Column (c) perform signi�-
cantly worse than either the Agents Abreast or Random Walk patterns.

also be incorporated into the respective modules in the proposed simulation and analysis
framework. The complexity of the situation requires a complex model to fully capture the
search efforts. However, the modular nature of the proposed framework allows straightfor-
ward integration of the above components into a single swarm search model and analysis
methodology.
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5.2.2 Mine Warfare
Mine warfare poses a significant threat to any maritime force as mines are relatively cheap
and easy to employ. Furthermore, locating, identifying, and neutralizing mines is a time-
and resource-intensive, let alone dangerous, task. Recent advances in unmanned systems
have led to the development of several unmanned underwater mine hunting systems [41],
[42]. Furthermore, surface ships often integrate with mine hunting efforts, providing differ-
ent capabilities than their underwater counterparts. The mine threat exists in many different
situations, requiring a flexible tool to determine the best method to employ resources for
the situation.

A common tactic in mine warfare is the saturation of an area with a large number of mines,
i.e., a mine field, in an attempt to deny that area to the enemy. When faced with such
situations, U.S. and allied forces must have the ability to clear routes through the mined area
to enable access by friendly assets. Such an operational setting can leverage the proposed
framework, in which the employment of a large number of mine-sweeping and clearance
assets, potentially unmanned, can be evaluated. In this case, it is possible to populate the
environment with a large number of targets, as well as decoys if desired. By utilizing a
module to employ a search pattern focused around certain routes through the minefield,
we could determine the effectiveness of clearing that area. By implementing false alarms,
or decoys, we can determine the amount of time wasted on identifying non-mine objects.
By implementing different search agent and target characteristics, we could also model
differences between searchers, such as underwater systems and surface systems, as well as
different types of mines, such as bottom mines and moored mines, respectively.

5.2.3 Submarine Warfare
Submarine warfare is particularly well suited to search problems, given that the submarine
is inherently a covert, nominally intelligent, adversary operating in a large and relatively un-
restricted environment. Searching for submarines occurs in a variety of different situations.
In scenarios envisioning contested maritime waters, often times adversary submarines may
be employed to act as deterrents or scouts. Alternatively, when transiting and escorting a
friendly High Value Unit (HVU), it is essential to clear the area around the HVU, necessi-
tating the hunt for enemy undersea threats. Moreover, it may also be necessary to monitor
the transit of enemy submarines through choke-points, either to know that they have de-
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ployed or to initiate further tracking methods. Given the diversity of undersea warfare
scenarios where submarines are employed, anti-submarine warfare and effective search for
enemy assets may also potentially benefit from this thesis work.

As motivation for this thesis, Chapter 2 proposed an anti-submarine warfare scenario re-
quiring area clearance of enemy submarine threats. As also mentioned, escorting a HVU
is of high importance, and such a scenario could also be addressed using the framework
presented in this thesis by changing the searchers’ pattern to clear an area around the HVU
before setting up a picket around the area of interest, with additional searchers clearing
a larger area in advance of the transiting HVU. Furthermore, the target’s behavior could
be modified to emulate their approach of the HVU to simulate a threat. Additionally, a
more appropriate measure of performance that could be captured by the modular simula-
tion framework would be to measure, for example, the ability of the target to approach
within a set distance from the HVU within a set time period.

5.3 Future Work
While the representative demonstration of the proposed simulation and analysis framework
in this thesis highlight its contribution for assessing swarm search models, there are many
avenues of future research and extensions for further improvement. Further research and
modifications could greatly expand the relevance and number of applicable situations, as
well as improve the interface between the software implementation and the operations an-
alyst.

5.3.1 Target Distribution
In the situations modeled in this thesis, we generated the target’s initial location as drawn
from a uniform distribution over the search area, but availability of intelligence on target
location may inform a different distribution. We are interested in studying the impact of
different target distributions on the search effectiveness. In the context of the modular
framework, this addition would be easy to implement by restructuring the initial tar-

get position module by incorporating a probabilistic bias to the starting location. For
example, we could implement scenarios where we have time late information on the target,
so we know the maximum distance the target could be from a given datum, and further
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knowledge or assumptions about the target could further refine the distribution of target
locations.

We could also use the initial target position module to explore how adversarial
tactics affect current and future search capabilities. If we believe that the targets arrange
themselves in a specific formation or along certain geological features, such as staying
close to the coastline, we can determine how this affects the performance of our searches.
A random search or one focused on uniform coverage of the entire search area may not
be as effective as one that places a majority of its efforts in the areas we suspect the target
to be located. Analyzing how the starting location of the target affects different search
techniques may allow for effective modification of search tactics.

Furthermore, such future work can enable a better measure of the quality of information and
target location intelligence. By comparing our measures of effectiveness with the uniform
target distribution to those where we have a biased starting location, we may determine how
much the additional intelligence improves our search. This comparative study can allow
operational planners to calculate the amount of resources to be allocated to gaining that
intelligence versus putting them into other areas of the search. It may also be possible to
determine this target distribution from previous searches. Due to the limited endurance of
most unmanned systems, we could utilize this knowledge on how target distributions affect
search performance to conduct initial coarse searches to allow follow-on, higher-resolution
searches to perform more effectively.

Further analysis into how different initial target distributions impacts our search will help
further develop the robustness of the proposed framework and methodology.

5.3.2 Search Patterns
For the presented research, we focused on three relatively basic search patterns. Two of
these patterns are deterministic, based on an ideal lawnmower search pattern, and the third
is a generic random search. While these provide an adequate baseline and are useful for
showing the applicability of the proposed framework, the true purpose of the framework is
exploring search strategies that take full advantage of swarm behaviors. As such, research
into different search patterns would provide insight into the advantages and disadvantages
that each provides.
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As outlined in Chapter 3, the search pattern is controlled by the searcher movement

module. This decomposition allows considerable flexibility in the search patterns that we
can explore, and enables the development of dynamic search patterns which change based
on changing circumstances in the search evolution. For example, we could utilize the
framework to investigate the differences between a klinokinetic and an orthokinetic search
process [43]. For a klinokinetic search process, a searcher’s turning rate increases as it
finds itself closer to its desired zone. This change induces the searcher’s path to become
more complex, causing it to remain in the general vicinity. Conversely, for the orthokinetic
search process, the searcher’s forward speed decreases as it finds itself closer to its desired
zone, which causes the searcher to linger in the vicinity. By linking these behaviors to
target detections, we can potentially implement an effective tracking system. Furthermore,
if the agents act independently, without communication between themselves or a central
server, we could use a snap shot of the searchers’ locations at a specific time, and ascertain
the target’s location through the concentration of searchers. These types of random search
behaviors are often found in nature and their application could be investigated in regards to
a swarm search model.

Similarly, the framework makes a large amount of data available to all of the modules,
which would provide the basis for exploring other nature-inspired search strategies. For
example, this framework could be utilized to simulate ant-based foraging models, where
each agent deposits digital pheromones which guide the actions of the other agents. In
this way, we could investigate the feasibility of integrating this type of search strategy into
swarms of unmanned systems.

Numerous search strategies are currently being explored that could influence the future
of swarm searches. These strategies offer their own advantages and disadvantages and
have yet to be fully explored in an operationally relevant environment or context. The
framework developed herein provides a foundation which allows the exploration of these
search strategies in a multitude of scenarios.

5.3.3 Sensor Characteristics
The consideration of different sensor characteristics provides a wide area of future develop-
ment as well. As sensors and their detection characteristics define a significant component
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in search models and search performance, analyzing the effectiveness of sensors is vital to
informing both design decisions as well as search asset employment strategies.

Often times, sensor performance changes depending on the conditions that it is used in. For
example, some sensors work better at certain speeds, or their ability to correctly identify a
target decreases as the speed of the search platform utilizing it increases. Other times, envi-
ronmental factors play a major part in the sensor capabilities, such as heavy fog decreasing
effective ranges of visual detectors. It is important to capture these characteristics, espe-
cially in situations where searcher behaviors or environmental conditions may be changing.

Our framework could be extended in a straightforward manner to address many of these
considerations. The ability to easily change the sensor modules allows for the rapid test-
ing of multiple types of sensors incorporated into a number of different search strategies.
Furthermore, characteristics of the individual agents, such as their search speeds, as well
as information about the environment, is already passed to each module in the current im-
plementation of the software, allowing the sensor’s detection curve to potentially adapt to
current operating conditions [19].

Furthermore, real-world sensors are never perfect. The sensor profile used in the demon-
stration of the framework was assumed to have a limited detection capability, involving
false negative detections, even at its most effective range. Further, due to noise in the sen-
sor and the environment, there exists the possibility of false alarms. While false alarms do
not directly impact our ability to detect the real target, it does create confusion and com-
plicates the search [19]. Such distractions impact search efforts considerably, and as such,
future search models can incorporate an inspection behavior that requests additional search
resources upon a possible contact. Moreover, with the introduction of false alarms into a
given search model, we are able to explore the effectiveness of search strategies that are
adaptive (versus nonadaptive) to (both true and false) positive detections.

Implementation of different sensors into the proposed framework involves changing the
detection module. For the different sensor detection curves or those that depend on
dynamic agent characteristics, this modification would primarily involve the sub-function
that determines the probability of detection to reflect, e.g., a different sensor detection
curve. For the introduction of false alarms, a more substantial development effort would be
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necessary, as an additional variable which triggers follow-on behaviors for search agents
(such as if an actual detection was made) would need to be implemented.

5.3.4 Levels of Communication
The level of communication between agents is another important aspect of future concepts
for swarm search. In an ideal situation, each agent would have the same knowledge as all
other agents in real time. Due to limitations in technology and operational constraints, pro-
viding enough bandwidth for many systems to communicate necessitates looking for other
communication options besides a complete network [11]. Traditionally, a hub-and-spoke
model has been relied on for command and control of multiple agents, where a central
server communicates with all agents; however, several other potential solutions exist and
should be explored as well.

A central server provides a hub for inter-agent communication to pass through before it
branches out to agents. The hub-and-spoke model provides many benefits, including sim-
plicity, for a model containing n agents only needs n−1 spokes to connect them. Further-
more, the simplicity of the network can potentially lead to an efficient use of bandwidth
between agents. The main drawback of this network configuration is the lack of robust-
ness, for the loss of the central server would destroy the network.

The most comprehensive communication scheme is a complete network where each agent
passes information to every other agent. This topology provides each agent with the most
up-to-date information while maintaining the most reliable flow of information; however,
such a complete network also means that as the number of agents grows, the bandwidth re-
quired grows exponentially and quickly become infeasible. One candidate approach could
involve establishing communication links to only a set of closest neighbors of each agent,
which could significantly reduce the number of communication paths. This method makes
it possible to potentially free considerable amounts of resources, although also adds several
areas of complexity, such as now possibly needing to address dynamic networks where an
agent’s closest neighbors may change with time. Furthermore, depending on the size of the
network, and the number of closest agents within communication range, several discon-
nected sub-networks may be formed with no communication between them.
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A unique approach relies on indirect communication between agents. By utilizing the
onboard sensors of the agent to read aspects of their surroundings, it is possible to relay
information and influence the behavior of the agents. In some approaches in the multi-agent
literature, the primary method of indirect communication relies on the relative location and
velocity vector of nearby agents, but if it is possible to expand this to different markers, then
it could potentially be possible to mimic behaviors in nature such as the pheromone-laying
performed by ants without the use of communication bandwidth to transmit such digital
pheromones [15].

5.3.5 Reactive and Adversarial Targets
Assuming that the target is ignorant of search attempts against it is a rather naïve assump-
tion. In most cases, the target will be able to detect the searchers and respond to their search
attempts. In other cases, the act of the searcher attempting to sense the target will alert the
target, such as in the case of active radar or active sonar. As such, the target’s movement
pattern and strategy also plays a large role in the search process.

Currently, the target movement module does not incorporate additional information in
the rest of the search evolution. By linking target behaviors, such as moving away from the
nearest searcher, to certain conditions, such as the searchers being within detection range,
future study could explore how these actions affect the search performance. Furthermore,
introduction of additional modules that incorporate a separate detection range by the target
in order to determine if the target senses the searchers could enable responses to counter
detections.

We can also integrate behaviors into our searchers, programming them to react to the tar-
get. Often times search patterns change when a target is detected. Such adaptive behaviors
include attempts to localize and close on the target in order to perform detailed target iden-
tification. In other cases, cooperating search assets may attempt to “herd” the target into
or out of an area of interest. By adding these behaviors to the simulation model, these
increasingly complex behaviors and their impact on the overall search strategy could also
be assessed, to include identification of the key factors impacting the searchers’ ability to
perform these adaptive search behaviors.
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5.3.6 JMP Integration
Recent changes to the statistical software, JMP, provides a wealth of new tools to the al-
ready powerful suite of features [44]. These features include the ability to open and close
connections between JMP and MATLAB directly for exchange of data and submission of
code for execution. This feature allows the potential for significant integration between
the statistical analysis tool and the underlying foundation of the simulation framework pre-
sented in this thesis. Implementing this cross-application integration could greatly simplify
the development and analytic process of new search models.

Additionally, JMP possesses an application development kit, which could enable the cre-
ation of self-contained, standalone applications in JMP, which can then be deployed at other
stations. Combining this feature with the ability to construct a comprehensive Graphical
User Interface (GUI) may potentially allow the development of a tactical support and/or
analysis tool. Such a decision aid could assist the analyst or system engineer in developing,
implementing, and analyzing different swarm search models in various contexts. Further-
more, such software could also allow the production of user-friendly trade-space graphics
to help users make decisions, potentially even with a limited understanding of the under-
lying model or program. As such, the ability to integrate the MATLAB-based modeling
capability of our framework with the statistical analysis tools provided by JMP could be a
useful avenue for future development efforts.

76



List of References

[1] M. Eaglen and J. Rodeback, “Submarine arms race in the Pacific: The Chinese
challenge to US undersea supremacy,” Heritage Foundation, Washington, DC, Tech.
Rep., Feb. 2010.

[2] O. R. Cote, Jr., The Third Battle: Innovation in the U.S. Navy’s Silent Cold War
Struggle with Soviet Submarines, (Newport Paper Number 16). Newport, Rhode
Island: NWC, 2003, pp. 3-116.

[3] S. J. A. Edwards, Swarming on the Battlefield. Santa Monica, CA: Rand, 2000.

[4] R. O. Work and S. Brimley, “Preparing for war in the robotic age,” Center for a New
American Security, Washington, DC, Tech. Rep., 2014.

[5] J. A. Sauter, R. S. Mathews, K. Neuharth, J. S. Robinson, J. Moody, and S. Riddle,
“Demonstration of swarming control of unmanned ground and air systems in
surveillance and infrastructure protection,” in IEEE Conference on Technologies for
Homeland Security, Boston, MA, 2009, pp. 51–58.

[6] A. R. Washburn, Search and Detection, 4th ed. Institute for Operations Research and
the Management Sciences, 2002.

[7] J. J. Corner, “Swarming reconnaissance using unmanned aerial vehicles in a parallel
discrete event simulation,” M.S. Thesis, Air Force Institute of Technology Wright
Patterson AFB OH School of Engineering and Management, 2004.

[8] J. Sauter and R. Matthews, “Performance of digital pheromones for swarming
vehicle control,” in International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht, Netherlands, 2005, pp. 903–910.

[9] M. A. Kovacina, D. Palmer, G. Yang, and R. Vaidyanathan, “Multi-agent control
algorithms for chemical cloud detection and mapping using unmanned air vehicles,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne,
Switzerland, 2002, pp. 2782–2788.

[10] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence. Chichester,
West Sussex: John Wiley & Sons, 2005.

[11] P. Dasgupta, “A multiagent swarming system for distributed automatic target
recognition using unmanned aerial vehicles,” IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, vol. 38, no. 3, pp. 549–563, 2008.

77



[12] D. J. Nowak, I. Price, and G. B. Lamont, “Self organized UAV swarm planning
optimization for search and destroy using swarmfare simulation,” in Winter
Simulation Conference, Dayton, OH, 2007, pp. 1315–1323.

[13] A. Banks and J. Vincent, “Exploring the performance of natural search strategies for
the control of unmanned autonomous vehicles,” Journal of Navigation, vol. 62,
no. 02, pp. 283–301, Mar. 2009.

[14] L. Barnes, M. M.-A. Fields, and K. Valavanis, “Unmanned ground vehicle swarm
formation control using potential fields,” in Mediterranean Conference on Control
Automation, Athens, Greece, June 2007, pp. 1–8.

[15] M. Flint, M. Polycarpou, and E. Fernandez-Gaucherand, “Cooperative control for
multiple autonomous UAV’s searching for targets,” in 41st IEEE Conference on
Decision and Control, Las Vegas, NV, 2002, pp. 2823–2828.

[16] R. R. Pitre, X. R. Li, and D. R. DelBalzo, “UAV route planning for joint search and
track missions An information-value approach,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 48, no. 3, pp. 2551–2565, 2012.

[17] D. J. Pack and G. W. York, “Developing a control architecture for multiple
unmanned aerial vehicles to search and localize RF time-varying mobile targets: Part
I,” in IEEE International Conference on Robotics and Automation, Barcelona, Spain,
2005, pp. 3954–3959.

[18] “Course Introduction,” class notes for Search Theory and Detection, Dept. of
Operations Research, Naval Postgraduate School, Monterey, CA, Spring 2013.

[19] D. H. Wagner, W. C. Mylander, and T. J. Sanders, Naval Operations Analysis,
3rd ed. Annapolis, MD: Naval Institue Press, 1999.

[20] B. Liu, R. Zhang, and C. Shi, “Analysis of foraging behavior in ant swarms based on
Starlogo simulation,” in IEEE International Conference on Robotics and
Biomimetics, Sanya, China, 2007, pp. 810–815.

[21] H. V. D. Parunak, S. Brueckner, and J. Sauter, “Digital pheromone mechanisms for
coordination of unmanned vehicles,” in International Joint Conference on
Autonomous Agents and Multiagent Systems. Bologna, Italy: ACM, 2002, pp.
449–450.

[22] J. E. Kline, “Red Dragon at Sea Scenario 2025,” unpublished.

[23] I. Easton, “China’s evolving reconnaissance- strike capabilities: Implications for the
U.S.-Japan alliance,” The Japan Institute of International Affairs: Project 2049
Institute, Chiyodaku, Tokyo, Japan, Tech. Rep. February, 2014.

78



[24] D. Cheng, “Meeting the challenge of Chinese expansionism on the East Asian
littoral,” The Heritage Foundation, Washington, DC, Tech. Rep. 4135, 2014.

[25] J. L. Karotkin, “Trend’s in China’s Naval Modernization,” Washington, DC, p. 12,
2014.

[26] L. Fuell, “Broad Trends in Chinese Air Force and Missle Modernization,”
Washington, DC, p. 11, 2014.

[27] C. Murray and K. Hsu, “China’s new fishing regulations seek to justify and
consolidate control in the South China Sea,” U.S.-China Economic and Security
Review Commission, Washington, DC, Tech. Rep., 2014.

[28] T. L. Grund, Jr., “Distributed Air Wing,” 2013.

[29] A. M. Law, Simulation Modeling & Analysis, 4th ed., K. E. Case and P. M. Wolfe,
Eds. New York, NY: McGraw-Hill, 2007.

[30] O. A. Yakimenko, Engineering Computations and Modeling in MATLAB/Simulink.
American Institute of Aeronautics and Astronautics, 2011.

[31] MathWorks. (2014, Jun. 25). Strategies for efficient use of memory - MATLAB &
Simulink. [Online]. Available: http://www.mathworks.com/help/matlab/matlab\
_prog/strategies-for-efficient-use-of-memory.html

[32] J. P. C. Kleijnen, S. M. Sanchez, T. W. Lucas, and T. M. Cioppa, “A users guide to
the brave new world of designing simulation experiments,” INFORMS Journal on
Computing, vol. 17, no. 3, pp. 263–289, Aug. 2005.

[33] S. M. Sanchez, T. W. Lucas, P. J. Sanchez, C. J. Nannini, and H. Wan, “Designs for
Large-Scale Simulation Experiments, with Applications to Defense and Homeland
Security,” in Design and Analysis of Experiments, Special Designs and Applications,
K. Hinkelmann and O. Kempthorne, Eds. Hoboken, New Jersey: John Wiley &
Sons, 2012, vol. 3, no. 1986, ch. 12, pp. 1–25.

[34] S. Sanchez and P. Sanchez, “Very large fractional factorial and central composite
designs,” ACM Transactions on Modeling and Computer Simulation, vol. 15, no. 4,
pp. 362–377, 2005.

[35] S. Sanchez and H. Wan, “Work smarter, not harder: A tutorial on designing and
conducting simulation experiments,” in Winter Simulation Conference, Berlin,
Germany, 2012, pp. 47–57.

79



[36] H. Vieira, S. Sanchez, K. H. Kienitz, and M. C. N. Belderrain, “Improved efficient,
nearly orthogonal, nearly balanced mixed designs,” in Winter Simulation
Conference. Phoenix, AZ: IEEE, 2011, pp. 3605–3616.

[37] S. M. Sanchez and T. W. Lucas. (2014, Jul. 11). SEED Center for data farming.
[Online]. Available: http://harvest.nps.edu/

[38] J. L. Devore, Probability & Statistics for Engineering and the Sciences, 8th ed.,
M. Julet, Ed. Boston, MA: Brooks/Cole, 2012.

[39] D. C. Montgomery, E. A. Peck, and G. G. Fining, Introduction to Linear Regression
Analysis, 5th ed., P. Bloomfield, Ed. Hoboken, New Jersey: John Wiley & Sons,
2012.

[40] United States Coast Guard, “Coast Guard search and rescue statistics , 1964-2001,”
U.S. Department of Homeland Security, Washington, DC, Tech. Rep., 2001.

[41] D. Parsons, “Bigger brains, better batteries will enable new missions for robotic
submarines,” National Defense, vol. 98, no. 718, pp. 28–29, 2013.

[42] NSWC Panama City. (2014, Aug. 10). MK18 Kingfish UUV deployed to 5th Fleet,
[Online]. Available: http://www.navy.mil/submit/display.asp?story\_id=75039

[43] S. Kernbach, Ed., Handbook of Collective Robotics: Fundamentals and Challenges.
Singapore: Pan Stanford, 2013.

[44] M. Proust, “New features in JMP 11,” SAS Institute Inc., Cary, NC, Tech. Rep.,
2013.

80



Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

81


